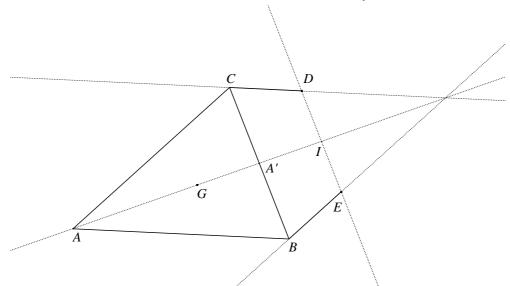


Correction (en utilisant un repère)



- 1. a. Prenons le repère $\left(A; \overrightarrow{AB}, \overrightarrow{AC}\right)$ où A a pour coordonnées (0; 0), B(1; 0) et C(0; 1). Des données de construction on tire que $E\left(1; \frac{1}{3}\right)$ et $D\left(\frac{1}{3}; 1\right)$, soit $I\left(\frac{2}{3}; \frac{2}{3}\right)$ ou encore $\overrightarrow{AI} = \frac{2}{3} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}$.
- b. Les coordonnées de A' sont $A'\left(\frac{1}{2};\frac{1}{2}\right)$ d'où $\overrightarrow{AA'}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$.
- c. Faisons le déterminant des vecteurs : $\det\left(\overrightarrow{AA'}, \overrightarrow{AI}\right) = \begin{vmatrix} 1/2 & 2/3 \\ 1/2 & 2/3 \end{vmatrix} = 0$; on pouvait également remarquer que $2\overrightarrow{AA'} = \overrightarrow{AB} + \overrightarrow{AC} = \frac{3}{2}\overrightarrow{AI} \Leftrightarrow \overrightarrow{AI} = \frac{4}{3}\overrightarrow{AA'}$.
- 2. Les coordonnées de G sont $G\left(\frac{1}{3}; \frac{1}{3}\right)$ d'où $\overrightarrow{AI} = 2\overrightarrow{AG}$ et G est le milieu de [AI].
- 3. $\det\left(\overline{BC}, \overline{ED}\right) = \begin{vmatrix} 0-1 & \frac{1}{3}-1\\ 1-0 & 1-\frac{1}{3} \end{vmatrix} = \begin{vmatrix} -1 & -\frac{2}{3}\\ 1 & \frac{2}{3} \end{vmatrix} = -\frac{2}{3} + \frac{2}{3} = 0$ donc les droites (*BC*) et (*ED*) sont parallèles.