MATHÉMATIQUES

Cette épreuve comporte deux (02) pages numérotées 1/2 et 2/2. L'usage de la calculatrice scientifique est autorisé.

FICHE (EQUATIONS DIFFERENTIELLE)

Exercice 1

Parmi les équations suivantes, indique celles qui sont des équations différentielles.

1)
$$(E)$$
: $2y^2 + y = 2$;

$$2)(E): y' + 4 = 0;$$

3)
$$(E)$$
: $y^2 = 1$;

4)
$$(E): y'' + 2y' + y = 5$$
; 5) $(E): y + 3 = 0$.

5)
$$(E)$$
: $y + 3 = 0$.

Exercice 2

Résous sur \mathbb{R} les équations différentielles suivantes :

1)
$$y' + 2y = 0$$
 2) $7y' = 3y$

2)
$$7y' = 3y$$

Exercice 3

Résous sur \mathbb{R} l'équation différentielle : y' + 2y = 6.

Exercice 4

Résous sur \mathbb{R} l'équation différentielle : y'' - 4y = 0.

Exercice 5

Résous sur \mathbb{R} l'équation différentielle : y'' + 4y = 0.

Exercice 7

- 1. Résous sur \mathbb{R} l'équation différentielle (E) : y'' + 25y = 0.
- 2. Détermine la solution f de (E) qui vérifie : f(0) = 1 et $f'(\frac{\pi}{\epsilon}) = -2$.

Exercice 8

Pour chacune des équations différentielles suivantes, détermine la solution vérifiant la condition donnée:

a.
$$y' = -2y$$
, $f(0) = 1$.

b.
$$y' - (ln2)y = 0$$
 , $f(2) = \frac{l}{2}$.

Exercice 9

On considère dans \mathbb{R} l'équation différentielle(E): $y' + 2y = e^{-2x}$.

- 1. Vérifie que la fonction g telle que $g(x) = (x + 1)e^{-2x}$ est une solution de(E).
- 2. Démontre qu'une fonction h + g est solution de (E)si et seulement si la fonction h est solution de l'équation différentielle(E'): y' + 2y = 0.
- 3. Détermine les solutions sur \mathbb{R} de l'équation différentielle(E').
- 4. a) Déduis des questions précédentes, les solutions sur \mathbb{R} de l'équation différentielle(E).
 - b) Détermine la solution f de(E) vérifiant la condition f(0) = -2.

Exercice 10

On considère l'équation différentielle(E) : $y' + 3y = 2e^{-x}$.

- 1. Détermine le nombre réel m pour que la fonction h définie sur \mathbb{R} par : $h(x) = me^{-x}$ soit solution de(E).
- 2. Résous dans \mathbb{R} l'équation différentielle (E'): y' + 3y = 0.
- 3. Démontre qu'une fonction h-g est solution de (E') si et seulement si la fonction g est solution de (E).
- 4. Déduis des questions précédentes les solutions sur \mathbb{R} de l'équation différentielle(E).

Exercice 11

Soit θ la température d'un corps à l'instant t. La température ambiante est 30°C.

A chaque instantt, on pose : $x(t) = \theta(t) - 30$. On suppose que la fonction x est dérivable sur \mathbb{R} et vérifie : $x' = -k^2x$ ($k \in \mathbb{R}^*$). A l'instantt = 0, la température de ce corps est 70°C et au bout de 5 minutes, elle n'est plus que de 60°C.

- 1) Détermine $\theta(t)$, où t est mesuré en minutes.
- 2) Détermine la température de ce corps au bout de 20 minutes.

BONUS

Tableau récapitulatif

Types d'équations différentielles	Fonctions solutions
$y' + ay = 0$, $a \in \mathbb{R}$	$x \mapsto ke^{-ax}, k \in \mathbb{R}$
$y' + ay = b$, $a \in \mathbb{R}^*$, $b \in \mathbb{R}^*$	$x \mapsto ke^{-ax} + \frac{b}{a}, k \in \mathbb{R}$
y'' = 0	$x \mapsto ax + b \;,\; a \in \mathbb{R} \;, b \in \mathbb{R}$
$y'' - \omega^2 y = 0 \ , \omega \in \mathbb{R}^*$	$x \mapsto ae^{-\omega x} + be^{\omega x}, \ a \in \mathbb{R}, b \in \mathbb{R}$
$y'' + \omega^2 y = 0$, $\omega \in \mathbb{R}^*$	$x \mapsto a \cos \omega x + b \sin \omega x, \ a \in \mathbb{R}, b \in \mathbb{R}$