Partice Cupacions Assignate Devoir PTDE Losses (Condition 2002)

| Losses (Condition 2002) | Mathematiques - The Condition 2002 | Mathematiques - The Condition 2003 | Mathematiques - The Conditi gaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Soit la fonction f définie par :
$$\begin{cases} f(x) = \frac{1}{\ln x} + x + 1 \text{ si } x \neq 0 \\ f(0) = 1 \end{cases}$$

Lycée Sainte Marie Cocody Terminale C

Mercredi 13 Janvier 2021

Durée: 4 heures

MATHEMATIQUES

EXERCICE 1 (4 points)

On considère quatre points A, B, C et D tels que trois quelconques ne soient pas alignés.

- Démontre que ABCD est un parallélogramme si et seulement si D est le barycentre du système {(A; 1); (B; -1); (C; 1)}
- 2. On suppose que ABCD est un parallélogramme. Soit (E₁) l'ensemble des points M du plan tels que $\|\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\| = BD$. Détermine puis construis (E₁).
- 3. On suppose que ABCD est un rectangle.
- a. Démontre que pour tout point M du plan, $MA^2 MB^2 + MC^2 = MD^2$.
- b. Détermine puis construis l'ensemble (E₂) des points M du plan tels que $MA^2 MB^2 + MC^2 = BD^2$

EXERCICE 2 (5 points)(les questions 1., 2. et 3. sont indépendantes)

- 1. Soit (E) l'équation dans \mathbb{N}^2 , xy 5x 5y 7 = 0.
- a. Démontre que $xy 5x 5y 7 = 0 \iff (x 5)(y 5) = 32$
- b. Résous (E)
- 2. a. Soit le nombre A = 48 858 écrit dans le système décimal. Donne l'écriture de A dans le système hexadécimal et dans la base 7.
- b. soit B = $\frac{11111100101^2}{11111100101^2}$ écrit dans le système binaire. Détermine l'écriture décimale de B. 3.a. le quotient d'un entier relatif x par 3 est 7. Quels sont les restes possibles ? Déduis-en les
- valeurs possibles de x. b. 557 a pour quotient l'entier naturel q et pour reste 85 dans la division euclidienne par un entier naturel b. Détermine tous les couples (b; q) d'entiers naturels qui conviennent.

PROBLEME (11 points)

PARTIE A

Soit φ la fonction définie sur] 0; $+\infty$ [par $\varphi(x) = 1 + \frac{1}{x^2} - 2\ln x$

- 1. Calcule les limites de φ en $+\infty$ et à droite de 0.
- 2. On note φ' la dérivée de φ ; démontre que : pour tout $x \in]0$; $+\infty[$, $\varphi'(x) = \frac{-2(1+x^2)}{x^3}$
- 3. a. Dresse le tableau de variation de φ .
- b. Démontre que l'équation $\varphi(x) = 0$ admet une unique solution α dans] 1; $+\infty$ [
- 4. Détermine le signe de $\varphi(x)$ pour tout x dans] 0; $+\infty$

PARTIE B

On considère la fonction ψ définie sur] 0; $+\infty$ [par $\psi(x) = x^2(1 - \ln x) + 1 + \ln x$

- 1. Calcule les limites de ψ en $+\infty$ et à droite de 0.
- 2. On note ψ' la dérivée de ψ ; démontre que : pour tout $x \in (0; +\infty)$, $\psi'(x) = x \varphi(x)$.
- 3. Démontre que $\psi(\alpha) > 0$.
- 4. a. Dresse le tableau de variation de ψ .
- b. Démontre que l'équation $\psi(x) = 0$ admet une unique solution β dans 0; 1[.

5. On admet que l'équation $\psi(x) = 0$ admet une unique solution γ dans $]\alpha$; $+\infty$ [.

a. Démontre que :

$$\begin{array}{l} \forall \ x \ \in \]0; \beta[\ \cup\]\gamma; \ +\infty[\ , \ \psi(x) \ < 0 \\ \forall \ x \ \in \]\beta; \ \gamma[\ , \ \psi(x) \ > 0 \ . \end{array}$$

b. Justifie que : $\beta \in]0,3; 0,4 [$ et $\gamma \in]3,3; 3,4 [$

PARTIE C

On considère la fonction f définie sur $[0; +\infty[$ par

$$\begin{cases} f(x) = \frac{x \ln x}{1 + x^2} & \text{si } x \in]0; +\infty[\\ f(0) = 0 & \end{cases}$$

1.a. Démontre que f est continue à droite en 0

b. f est-elle dérivable à droite en 0 ? Justifie. Interprète graphiquement le résultat.

2. Calcule la limite de f en $+\infty$ puis interprète graphiquement ce résultat.

3. On note f' la dérivée de f. Démontre que $\forall x \in]0; +\infty[, f'(x) = \frac{\psi(x)}{(1+x^2)^2}$.

4. Dresse le tableau de variation de f.

5. Démontre que si λ est solution de l'équation $\psi(x) = 0$ alors $\ln \lambda = \frac{\lambda^2 + 1}{\lambda^2 - 1}$

6. Déduis-en que $f(\beta) < 0$ et $f(\gamma) > 0$.

7. Vérifie que f(1) = 0 et déduis-en le signe de f.

8. Trace la courbe représentative (\mathcal{C}) de f dans le plan muni d'un repère orthogonal (O, I, J). On prendra : OI = 3 cm ; OJ = 8 cm. β = 0,35 et γ = 3,35

LYCEE CLASSIQUE ABIDJAN - COMPOSITION N°2

SUJET DE MATHEMATIQUES TIE C (3 h)

Cette épreuve comporte deux (2) pages. L'usage de la calculatrice est autorisé.

L'espace est rapporté au repère orthonormé (O; $\overrightarrow{\iota}$; $\overrightarrow{\jmath}$; \overrightarrow{k}), on donne les points A(1; 1; 1) et B(3; 2; 0), (P) est le plan passant par B et de vecteur normal \overrightarrow{AB} et (Q) le plan d'équation x - y + 2z + 4 = 0

- 1) Justifie qu'une équation cartésienne de (P) est : 2x + y z 8 = 0
- On appelle sphère de centre A et de rayon r l'ensemble des points M de l'espace tels que MA = r
 - a) Détermine une équation de la sphère (S) de centre A et de rayon AB
 - b) Calcule la distance du point A au plan (Q) et déduis en que le plan (Q) est tangent à la sphère (S)
 - c) Le plan (P) est il tangent à la sphère (S) ? Justifie ta réponse
- Soit C le projeté orthogonal du point A sur le plan (Q)
 - a) Justifie que le point C a pour coordonnées (0; 2; -1)
 - b) Prouve que les plans (P) et (Q) sont sécants
 - c) Démontre qu'une représentation paramétrique de la droite (D) intersection de (P) est (Q) est:

$$\begin{cases} x = k \\ y = -5k + 12 & k \in IR \\ z = -3k + 4 \end{cases}$$

d) Vérifie que le point A n'appartient pas à la droite (D)

EXERCICE 2 (5 points)

Le plan est muni d'un repère orthonormé (O; $\bar{\iota}$ '; $\bar{\jmath}$ '). E est l'ensemble des points M(x; y) dont les coordonnées x et y vérifient l'équation 9y2 = | 4x2 - 16x |

- 1) a) Justifie que E est la réunion de la courbe E_1 d'équation : $4(x-2)^2 9y^2 = 16$ et de la courbe E_2 d'équation : $4(x-2)^2 + 9y^2 = 16$
 - b) Donne la nature et les coordonnées du centre K des courbes E1 et E2
- 2) a) Justifie que dans le repère (K; $\overrightarrow{\iota}$; $\overrightarrow{\jmath}$) l'équation réduite de E₁ est : $\frac{x^2}{4} \frac{y^2}{16} = 1$
 - b) Détermine dans le repère $(O; \vec{\iota}'; \vec{\jmath}')$ les coordonnées des sommets A et A', des foyers F et F' puis une équation des asymptôtes à E1
- a) Donne dans le repère (K; i'; j') l'équation réduite de E₂
 - b) Détermine dans le repère $(O; \vec{\iota}; \vec{\jmath})$ les coordonnées des foyers G et G' puis une équation des directrices à E2

- a) Après avoir placé dans le repère (O; T; T) les sommets A et A', les foyers F et F' puis les asymptôtes à E₁, construis E₁
 - b) Place les éléments caractéristiques de E2 et construit E2 puis déduis en rouge la courbe de E

PROBLEME (11 points)

L'objet de ce problème est l'étude de la fonction f de IR vers IR définie par :

$$f(x) = \frac{x-1}{\ln|x-2|} \quad si \ x \in]-\infty; 1[\cup]1; 2[\cup]2; 3[\cup]3; +\infty[\ ; \ f(1) = -1 \ etf(2) = 0$$

<u>PARTIE A</u> On donne la fonction g définie et dérivable sur IR \ {2} par g(x) = $\ln |x-2| - \frac{x-1}{\sqrt{1-2}}$

- 1) a) Calcule la limite de g en ∞ et en + ∞
 - b) Calcule la limite à gauche et à droite en 2
- 2) a) Justifie que pour $x \in IR \setminus \{2\}$ g' $(x) = \frac{x-1}{(x-2)^2}$
 - b) Dresse le tableau de variation de g
- 3) a) Démontre que l'équation g-x) = 0 admet une solution unique k dans]2; $+\infty[$
 - b) Détermine une valeur approchée de k à 0,1 près
- 4) Justifie que pour $x \in]-\infty$; $2[\cup [k; +\infty[g(x) \ge 0 \text{ et pour } x \in]2; k [g(x) < 0]$

PARTIE B Soit (C) est la courbe de f dans un repère orthonormé (O; I; J) unité 1 cm

- 1) a) Justifie que la fonction f est définie sur IR \ {3}
 - b) Calcule $\lim_{x \to 3} f(x)$ et $\lim_{x \to 3} f(x)$ puis donne une asymptôte à (C)
 - c) Calcule $\lim_{x \to -\infty} f(x)$, $\lim_{x \to -\infty} \frac{f(x)}{x}$, $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis donne une interprétation

graphique des résultats

- 2) a) Vérifie que $f(x) = \frac{1}{\frac{|I|}{|I-x|}}$ puis déduis en que f est continue en x = 1
 - b) Justifie que f est continue en 2
 - c) Démontre que (C) admet en x = 1 une tangente verticale
 - d) Etudie la dérivabilité de f en x = 2 et donne une interprétation graphique du résultat
- 3) On admet que f est dérivable sur IR \ {1;2;3}
 - a) Calcule f'(x) et justifie que f(x) et g(x) ont le même signe
 - b) Démontre que f(k) = k 2 et dresse le tableau de variation de f
 - c) Justifie que $f(x) \le 0$ pour $x \in]-\infty$; 3[et $f(x) \ge 0$ pour $x \in]3$; $+\infty$ [
- 4) Construire dans le repère (O; I; J) l'asymptôte et les tangentes en x = 1; x = 2 à (C) puis (C)

