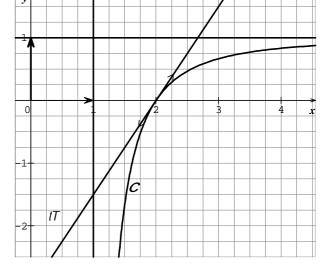


Problème 16 Partie A

On donne dans le plan muni d'un repère orthogonal (O; i; j)d'unités graphiques : 3 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées, la représentation graphique (C) d'une fonction g définie, dérivable et strictement croissante sur l'intervalle $]1;+\infty[$ ainsi que deux droites (T) et (D). La droite (T) passe par les points de coordonnées respectives (2;0) et (0;-3). La droite (D) a pour équation y=1.



- **1.a.** Déterminer graphiquement g(2).
 - **b.** Sachant que la droite (T) est tangente à la courbe (C) au point d'abscisse 2, déterminer graphiquement g'(2).
 - **c.** On admet que la droite (D) est asymptote à la courbe (C). Déterminer graphiquement la limite de g(x) quand x tend vers $+\infty$.
- **d.** Sachant que la courbe (C) coupe l'axe des abscisses en un seul point. Etudier graphiquement le signe de la function g sur l'intervalle $]1;+\infty[$.
- **2.** On définit les fonctions g_1 , g_2 , g_3 sur l'intervalle]1; $+\infty$ [par :

$$g_1(x) = 1 - \frac{1}{x - 1}$$
 ; $g_2(x) = 1 - \frac{2}{x^2 - x}$ et $g_3(x) = \ln(x - 1)$.

L'une d'elles est la fonction g que l'on se propose d'identifier en utilisant les résultats de la première question.

- **a.** Calculer $g_1(2)$, $g_2(2)$, $g_3(2)$. Ces résultats permettent-ils d'éliminer une des trois fonctions?
- **b.** Calculer $\lim_{x \to +\infty} g_1(x)$; $\lim_{x \to +\infty} g_2(x)$; $\lim_{x \to +\infty} g_3(x)$. Quelle fonction peut-on alors éliminer?

Soit f la fonction définie sur l'intervalle $]1;+\infty[$ par $f(x)=x+1+2\ln x-2\ln(x-1)$.

On note (\mathcal{C}_f) . la courbe représentative de la fonction f dans le plan muni d'un repère orthogonal (O; i; j)d'unités graphiques 3 cm sur l'axe des abscisses et 1cm sur l'axe des ordonnées.

1.a. Quelle propriété de la fonction logarithme népérien permet de prouver que, pour tout réel x

appartenant à l'intervalle]1; +
$$\infty$$
[, $f(x) = x + 1 + 2 \ln \left(\frac{x}{x-1}\right)$?

- **b.** Déterminer la limite de f en 1. Que peut-on en déduire pour la courbe (\mathcal{L}_f) ?
- **2.a.** Déterminer la limite de f en $+\infty$.
 - **b.** Justifiez que la droite (Δ) d'équation y = x + 1 est asymptote oblique à la courbe (\mathcal{L}_f).
 - **c.** Montrer que pour tout x de l'intervalle $]1; +\infty[, \frac{x}{x-1} > 1]$. Quel est alors le signe de $\ln\left(\frac{x}{x-1}\right)$?
 - **d.** En déduire la position de la courbe (\mathcal{C}_f) par rapport à la droite (Δ).
- **3.a.** Déterminer la fonction dérivée f' de la fonction f et vérifier que, pour tout x appartenant à l'intervalle $]1;+\infty[,f'(x)=g(x)$ où g est la fonction trouvée dans la partie A.
- **b. à** l'aide des résultats graphiques obtenus dans la partie A, dresser le tableau de variation de la fonction f. Partie C

1°/Montrer que, sur l'intervalle]1; $+\infty$ [, la fonction H définie par :H(x) = x ln x - (x - 1) ln (x - 1) est une primitive de la fonction h définie par $h(x) = \ln x - \ln (x - 1)$ sur cet intervalle.

- **2.a.** Construire la courbe (\mathcal{L}_f), la droite (Δ) et hachurer la partie du plan comprise entre la droite (Δ), la courbe (\mathcal{L}_f) et les droites d'équation x = 2 et x = 3.
- b. On désigne par A la valeur de l'aire, exprimée en unités d'aire, de la partie du plan hachurée précédemment. Donner la valeur exacte de A puis une valeur décimale approchée à 10^{-2} près par excès.

PROBLEME 17

Partie A

On considère la fonction g définie sur l'intervalle I =] 0; $+\infty$ [par : $g(x) = \ln x - 1 - \frac{9}{2}x^2$

(où ln désigne le logarithme népérien).

- 1. Calculer g'(x) pour tout $x \in]0; +\infty[$. Etudier son signe sur $]0; +\infty[$.
- 2. Etudier le sens de variation de la fonction g (on ne demande pas les limites en 0 et en $+\infty$).
- 3. En déduire pour tout $x \in]0$; $+\infty$ le signe de g(x).

Partie B

On se propose d'étudier la fonction f définie sur] 0; $+\infty$ [par : $f(x) = -9x + 5 - \frac{2\ln x}{x}$

On note C la courbe représentative de f dans un repère orthogonal $(O; \vec{i}; \vec{j})$ d'unités graphiques : 5 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1. Calculer $\lim_{x\to 0^+} f(x)$. En déduire l'existence d'une asymptote que l'on précisera.
- 3. Calculer $\lim_{x\to +\infty} f(x)$. (Etudier la limite de la fonction f lorsque x tend vers $+\infty$).
- 4.soit (Δ) la droite d'équation y=-9x+5. On considère la fonction h définie sur]0; $+\infty[$ par h(x)=f(x)-(-9x+5).
 - a. Démontrer que (Δ) est asymptote à la courbe C.
 - b. Calculer les coordonnées du point d'intersection de $\mathbb C$ et Δ
 - c. Etudier la position relative de C et Δ sur]0; $+\infty[$
- 5. a. Calculer f'(x) pour tout $x \in [0, +\infty)$. f' est la fonction dérivée de la fonction f
 - b. Vérifier que pour tout x de]0; $+\infty$ [: $f'(x) = \frac{2g(x)}{x^2}$.
 - c. Déduire de la partie A le sens de variation de f sur $]0; +\infty[$.
- 6. Déterminer une équation de la tangente (T) à la courbe C au point A d'abscisse 1.
- 7. Tracer C, (T) et les asymptotes à la courbe C dans le repère $(0; \vec{i}; \vec{j})$.
- 8. Démontrer qu'il existe un seul réel α de l'intervalle $\left\lceil \frac{1}{2}; 1 \right\rceil$ tel que $f(\alpha) = 0$. Donner un encadrement de α

d'amplitude 10^{-2}

Partie C:

Soit h la fonction définie sur l'intervalle] 0; $+\infty$ [par $h(x) = (\ln x)^2$

1. On désigne par h' la fonction dérivée de la fonction h.

Calculer h'(x) pour tout réel x de l'intervalle] 0; $+\infty$ [.

- 2. En déduire une primitive F de la fonction f sur l'intervalle $]0; +\infty$ [.
- 3. Hachurer sur le graphique la partie E du plan limitée par la courbe C, l'axe des abscisses et le droites (d_1) et (d_2) d'équations (d_1) : x = 1 et (d_2) : x = e.
- 4. Calculer la valeur exacte A de l'aire de ce domaine exprimée en cm².. Donner la valeur exacte .

Problème 18

Le plan P est muni d'un repère orthonormal (O; i, j) d'unité graphique 2 cm. On s'intéresse dans ce problème à une fonction f définie sur l'intervalle $]0; +\infty[$. On note C la courbe représentative de la fonction f dans le plan P.

Partie A: Etude d'une fonction auxiliaire

Soit g la fonction définie sur l'intervalle $[0; +\infty[$ par : $g(x) = x^2 - 1 + \ln x$.

On désigne par g' la fonction dérivée de la fonction g.

- 1. Calculer g'(x) pour tout réel x appartenant à l'intervalle $]0;+\infty[$. En déduire le sens de variation de la fonction g sur l'intervalle $]0;+\infty[$.
- 2. Calculer g(1) et en déduire l'étude du signe de g(x) pour x appartenant à l'intervalle $]0;+\infty[$.

Partie B : Détermination de l'expression de la fonction f

On admet qu'il existe deux constantes réelles a et b telles que, pour tout nombre réel x appartenant à $]0;+\infty[$,

$$f(x) = ax + b - \frac{\ln x}{x}$$
. on désigne par f' la fonction dérivée de la fonction f.

- 1. Calculer f'(x) pour tout réel x appartenant à l'intervalle $]0;+\infty[$.
- 2. Sachant que la courbe C_f passe par le point de coordonnées (1; 0) et qu'elle admet en ce point une tangente horizontale, déterminer les nombres a et b.

Partie C: Etude de la fonction f

On admet désormais que, pour tout nombre réel x appartenant à l'intervalle $]0;+\infty[$, $f(x)=x-1-\frac{\ln x}{x}$

- 1. a. Déterminer la limite de la fonction f en 0 et donner une interprétation graphique de cette limite.
 - b. Déterminer la limite de la fonction f en $+\infty$.
- 2. a. Vérifier que, pour tout réel x appartenant à l'intervalle $]0; +\infty[, f'(x) = \frac{g(x)}{x^2}]$
 - b. Etablir le tableau de variation de la fonction f sur l'intervalle $]0;+\infty[$.
 - c. En déduire le signe de f(x) pour x appartenant à l'intervalle $[0; +\infty[$.
- 3. On considère la droite *D* d'équation y = x 1.
 - a. Justifier que la droite D est asymptote à la courbe C_f .
 - b. Etudier les positions relatives de la courbe C_f et de la droite D.
 - c. Tracer la droite D et la courbe C dans le plan P muni du repère (O; i, j)

Partie D : Calcul d'aire

On note A la mesure, exprimée en cm², de l'aire de la partie du plan P comprise entre la courbe C_f , l'axe des abscisses, et les droites d'équation x = 1 et x = e.

1. On considère la fonction H définie sur l'intervalle $]0;+\infty[$ par $H(x)=(\ln x)^2$.

On désigne par H ' la fonction dérivée de la fonction H.

- a. Calculer H'(x) pour tout réel x appartenant à l'intervalle $]0;+\infty[$.
- b. En déduire une primitive de la fonction f sur l'intervalle $]0;+\infty[$
- 2. Calculer A. Donner la valeur de A, arrondie au mm².

Problème 19

Partie A . Soient a et b deux nombres réels.

On considère la fonction numérique f définie, pour tout nombre réel x de $]0;+\infty[$, par : $f(x)=x^2+ax+b-2\ln x$.

On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormal (O; i, j)

(unité graphique : 2 cm). Soit A le point de coordonnées (1; −3).

Calculer les valeurs respectives des nombres réels a et b pour que, d'une part la courbe C_f passe par le point A et que, d'autre part, la tangente à cette courbe au point A admette un coefficient directeur égal à 0.

Partie B

Dans toute la suite du problème, on étudiera la fonction numérique f définie, pour tout nombre réel x de $]0;+\infty[$, par : $f(x) = x^2 - 4 - 2\ln x$.

- 1. a) Déterminer la limite de la fonction f en 0. Que peut-on en déduire pour la courbe C_f ?
- 2. a) Vérifier que, pour tout nombre réel x de $]0;+\infty[$, on a $f(x)=x\left(x-\frac{4}{x}-2\frac{\ln x}{x}\right)$.
 - b) En déduire la limite de la fonction f en $+\infty$.
- 3. Déterminer la fonction dérivée f 'de la fonction f . Vérifier que $f'(x) = \frac{2(x-1)(x+1)}{x}$.
- 4. Étudier le signe de la fonction f 'sur I et dresser le tableau de variations de la fonction f sur $]0;+\infty[$.
- 5. Déterminer le signe de f(x) quand le nombre réel x appartient à l'intervalle [1;2].
- 6. Tracer la courbe C_f dans le repère (O; i, j).

Partie C

Soit H la fonction numérique définie, pour tout nombre réel x de I, par : $H(x) = x \ln x - x$.

- 1. Calculer H'(x) où H' désigne la fonction dérivée de H. En déduire une primitive F de la fonction f sur $]0;+\infty[$.
- 2. On appelle Δ la partie du plan limitée par la courbe C_f , l'axe des abscisses et les droites d'équations x=1 et x=2. Hachurer Δ . Calculer la valeur exacte de l'aire de Δ en unités d'aire, puis en cm².

3

PROBLÈME 20

Partie A: étude d'une fonction auxiliaire

Soit g la fonction définie sur $]0; +\infty[$ par $g(x) = x^2 - 8 \ln x + 8$.

1. a. Calculer g'(x).

- b. Étudier le signe de g'(x).
- c. Dresser le tableau de variations de g (l'étude des limites de g n'est pas demandée).
- 2. Donner une valeur approchée de g(2) à 10^{-2} près, en déduire le signe de g(x) sur $[0; +\infty[$.

Partie B: étude et représentation graphique d'une fonction

Le plan est rapporté à un repère orthonormal (O; i, j), unité graphique 1 cm.

Soit f la fonction définie sur $]0;+\infty[$ par $f(x) = \frac{x^2 - 3x + 8 \ln x}{x}$ et C sa représentation graphique dans le repère (O; i, j).

- 1. Montrer que pour tout réel x de $]0; +\infty[$ on a : $f(x) = x 3 + \frac{8 \ln x}{x}$.
- 2. a. Déterminer les limites en 0 et en $+\infty$ de f(x).
 - b. En déduire l'existence d'une asymptote a la courbe C, et en donner une équation.
- 3. a. Déterminer la dérivée f ' de f sur $]0;+\infty[$.
 - b. Vérifier que pour tout réel x de $]0;+\infty[$ on a : $f'(x) = \frac{g(x)}{x^2}$ et en déduire le signe de f'(x).
 - c. Dresser le tableau de variations de f.
- 4. Soit D la droite d'équation y = x 3.
 - a. Montrer que D est asymptote à C en $+\infty$.
 - b. Calculer les coordonnées du point d'intersection A de C et de D.
 - c. Étudier la position relative de C et de D.
- 5. Tracer dans le repère (O; i, j) la courbe C et la droite D.

Partie C: calcul d'une aire

- 1. Soit *h* la fonction définie sur]0;+ ∞ [par $h(x) = \frac{\ln x}{x}$.
 - a. Vérifier qu'une primitive de h sur $]0;+\infty[$ est la fonction H définie par $H(x)=\frac{1}{2}(\ln x)^2$.
 - b. En déduire une primitive de $f \, \mathrm{sur} \,\,]0; +\infty[$.
- 2. a. Hachurer la partie du plan limitée par la courbe C et la droite D, et les droites d'équation x = 1 et x = 5.
 - b. Calculer en cm² l'aire de la partie du plan hachurée ; on donnera la valeur exacte et une valeur approchée a 10⁻² près.