Problème 31

Partie A : Étude de la fonction auxiliaire g définie sur $]0;+\infty[$ par $g(x)=1-\ln x-x^2$

- 1. Calculer g'(x) et en déduire le sens de variation de la fonction g. On a : $g'(x) = -\frac{1}{x} 2x$
- . Donc, pour tout réel x de l'intervalle $]0;+\infty[$, on a : g'(x)<0 .

La fonction g est donc strictement décroissante sur l'intervalle $[0;+\infty[$.

2. Calcul de g(1). Signe de g(x).

On a : $g(1) = 1 - \ln 1 - 1 = 0$. puisque la fonction q est strictement décroissante sur $[0; +\infty[$, on en déduit le tableau :

х	0	1	+∞
g '(x)		_	_
g(x)		+	0

Partie B: Étude de la fonction f définie sur $]0;+\infty[$ par $f(x)=\frac{\ln x}{x}-x+2$.

1. a) Déterminer la limite de la fonction f en 0. Interpréter graphiquement cette limite.

On peut écrire : $f(x) = \frac{1}{x} \times \ln x - x + 2$. Or $\lim_{x \to 0} \frac{1}{x} = +\infty$ et $\lim_{x \to 0} \ln x = -\infty$ donc, par produit :

 $\lim_{x\to 0} \frac{\ln x}{x} = -\infty$. Comme par ailleurs on a $\lim_{x\to 0} (-x+2) = 2$, on en déduit que : $\lim_{x\to 0} f(x) = -\infty$. La courbe C a donc une asymptote verticale d'équation x=0 (axe des ordonnées)

b) Déterminer la limite en $+\infty$ de la fonction f.

On sait que : $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et que : $\lim_{x \to +\infty} (-x+2) = -\infty$. Donc, par addition: $\lim_{x \to +\infty} f(x) = -\infty$ c) Justifier que la droite D d'équation y = -x+2 est asymptote à la courbe C.

On a: $f(x) - (-x+2) = \frac{\ln x}{x}$. Or $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$. Donc $\lim_{x \to +\infty} (f(x) - (-x+2)) = 0$.

Donc, la droite **D** d'équation y = -x + 2 est bien asymptote oblique à C en $+\tilde{0}$.

d) Position de la courbe C par rapport à la droite D.

Cette position est donnée par le signe de f(x)-(-x+2).

On a vu que : $f(x) - (-x + 2) = \frac{\ln x}{x}$. Or, sur l'intervalle $]0; +\infty[, \frac{\ln x}{x} \ge 0 \Leftrightarrow \ln x \ge 0 \Leftrightarrow x \ge 1]$

Donc : Sur l'intervalle]0;1[, la courbe C est en-dessous de la droite D ,

Sur l'intervalle $]1;+\infty[$, la courbe C est au-dessus de la droite D,

La courbe C coupe la droite D au point d'abscisse 1.

2. a) Montrer que pour tout x appartenant à l'intervalle $]0;1[, f'(x) = x^2g(x)]$.

On a, d'après les règles de dérivation : $f'(x) = \frac{\frac{1}{x} \times x - \ln x}{x^2} - 1 = \frac{1 - \ln x - x^2}{x^2}$

Donc:
$$f'(x) = \frac{1 - \ln x - x^2}{x^2} = \frac{g(x)}{x^2}$$
.

b) Tableau de variation de f. Le signe de f'(x) est le même que celui de g(x) qui a été vu à la question A.2)

On peut donc construire le tableau de variation de f :

Fomesoutra.com

X	0			1	ça
		$+\infty$			
f '(x)			+	0	_
f(x)		-8	→	1	

3. a) Déterminer la point A de C où la tangente est parallèle à l'asymptote D. Deux droites sont parallèles lorsqu'elles ont le même coefficient directeur. La droite D a pour coefficient directeur -1. La tangente à C au point d'abscisse x a pour coefficient directeur f'(x). Il faut donc résoudre l'équation f'(x) = -1. Cette équation équivaut successivement à :

$$\frac{g(x)}{x^2} = -1 \Leftrightarrow g(x) = -x^2 \Leftrightarrow 1 - \ln x - x^2 = -x^2 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = 1$$

b) Équation de la tangente T à C au point d'abscisse e.

Cette tangente est précisément celle qui est parallèle à la droite D.

Son équation est donnée par la formule : y = f'(e)(x-e) + f(e). Ou encore :

$$y = -1 \times (x - e) + \frac{1}{e} - e + 2 = -x + e + \frac{1}{e} - e + 2 = -x + 2 + \frac{1}{e}$$
. Finalement: $y = -x + 2 + \frac{1}{e}$.

4. a) Démontrer que l'équation f(x)=0 admet une solution unique α dans l'intervalle]0;1[. La fonction f est dérivable et strictement croissante sur l'intervalle]0;1[. De plus, nous savons $\lim_{x\to 0} f(x) = -\infty$ et que f(1)=1. Donc, d'après le théorème des valeurs intermédiaires,

l'équation f(x) = 0 admet une solution unique α dans l'intervalle]0;1[telle que $f(\alpha) = 0$.

b) Donner un encadrement d'amplitude 0,01 de α .

À la calculatrice, on trouve : $f(0,48) \approx -0.01$ et $f(0,49) \approx 0.05$. On en déduit : $0.48 \le \alpha \le 0.49$.

c. La fonction f est dérivable et strictement décroissante sur l'intervalle $]1;+\infty[$. Elle est e particulier sur l'intervalle $[2;3]\subset]1;+\infty[$ De plus, nous savons $f(2)=\frac{\ln 2}{2}>0$ et que

$$f(3) = \frac{\ln 3}{3} - 1 \approx -0,6337 < 0$$

Donc, d'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une solution unique β dans l'intervalle [0;1[telle que $f(\beta) = 0$.

b) Donner un encadrement d'amplitude 0,01 de β.

À la calculatrice, on trouve : $f(2,44) \approx -0,006$ et $f(2,45) \approx -0,02$. On en déduit : $2,44 \leq \beta \leq 2,45$.

5. voir courbe ci-dessous.

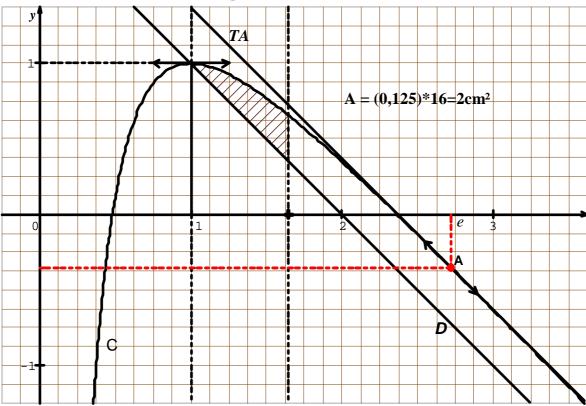
Partie C

1. $h(x) = (\ln x)^2$: $h'(x) = 2 \times \frac{1}{x} \ln x = \frac{2 \ln x}{x}$, par conséquent une primitive de $\frac{\ln x}{x}$ est $H(x) = \frac{1}{2} \times (\ln x)^2$.

On déduit que $F(x) = \frac{1}{2} \times (\ln x)^2 - \frac{1}{2} \times x^2 + 2x + c$.

2.
$$A = \left(\int_{1}^{\sqrt{e}} (f(x) - y) dx\right) u.a = \left(\int_{1}^{\sqrt{e}} \frac{\ln x}{x} dx\right) u.a = 16 \times \left[H(x)\right]_{1}^{\sqrt{e}} = 16 \left(H(\sqrt{e}) - H(1)\right) = 16H(\sqrt{e})$$

$$A = 8 \left(\ln \sqrt{e}\right)^{2} = 8 \left(\frac{1}{2} \times \ln e\right)^{2} = 2cm^{2}.$$



Problème 32

Partie A

1. g est dérivable sur l'intervalle $]0;+\infty[$.

Pour tout $x \in]0; +\infty[: g'(x) = 1 + \frac{5}{x} = \frac{x+5}{x}$. x+5 > 0 sur l'intervalle $]0; +\infty[.donc g'(x) > 0$ sur

l'intervalle $]0;+\infty[$ et par conséquent la fonction g est strictement croissante sur l'intervalle $]0;+\infty[$.

- 2.a. la fonction g est strictement croissante sur l'intervalle $]0;+\infty[$.elle est strictement croissante sur $[1;5]\subset]0;+\infty[$ et on a : $g(1)=1-5+5\ln 1=-4<0$ et $g(5)=5-5+5\ln 5=5\ln 5>0$ $0\in[g(1);g(5)]$. Par le théorème des valeurs intermédiaires on déduit que l'équation g(x)=0 admet une solution unique α telle que $g(\alpha)=0$ et $\alpha\in[1;5]$.
 - b. à l'aide de la calculatrice on lit : g(1,87) = -0,0003 < 0 et g(1,88) = 0,036 > 0, donc $1,87 \le \alpha \le 188$.
- 3. signe de g(x)

X	0		α		$+\infty$
g(x)		_	0	+	

Partie B

1.a.
$$\lim_{\substack{x \to 0 \ x > 0}} \frac{1}{x} = +\infty$$
; $\lim_{\substack{x \to 0 \ x > 0}} (x - 5) = -5$ et $\lim_{\substack{x \to 0 \ x > 0}} \ln x = -\infty$, donc par produit des limites on a : $\lim_{\substack{x \to 0 \ x > 0}} f(x) = +\infty$.

On déduit que la droite d'équation x = 0 est une asymptote verticale à la courbe C au voisinage de 0.

- b. $\lim_{x \to +\infty} \ln x = +\infty$ et $\lim_{x \to +\infty} \frac{5 \ln x}{x} = 0$ par différence des limites on a : $\lim_{x \to +\infty} f(x) = +\infty$.
- 2. a. f est dérivable sur l'intervalle $]0;+\infty[$ et pour tout $x \in]0;+\infty[$:

$$g'(x) = \frac{1}{x} - 5\frac{\frac{1}{x} \times x - \ln x}{x^2} = \frac{x - 5 + \ln x}{x^2} = \frac{g(x)}{x^2}.$$

b. pour tout $x \in]0; +\infty[$ on a : $x^2 > 0$, donc le signe de f'(x) dépend du signe g(x)

Fomesoutra.com

X	0	α +∞
f'(x)		- 0 +
f(x)		$+\infty$ $f(\alpha)$

3.a. Soit A le point de la courbe C d'abscisse 1

Equation de la tangente en A à la courbe C est : y = f'(1)(x-1) + f(1)

$$f'(1) = \frac{g(1)}{1^2} = g(1) = 1 - 5 + 5 \ln 1 = -4$$
 et $f(1) = \frac{(1 - 5) \ln 1}{1} = 0$

D:
$$y = -4(x-1) + 0 = -4x + 4$$
.

Coordonnées du point d'intersection de D et de l'axe des ordonnées : c'est l'ordonnée à l'origine On pose x = 0 donc y = 4 et on a : (0;4).

b. graphique

Partie C

1.
$$F(x) = x \ln x - x - \frac{5}{2} (\ln x)^2$$
. F est dérivable sur l'intervalle $]0; +\infty[$ et on $a : (u^2)' = 2u'u$, donc $F'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1 - \frac{5}{2} \times 2 \times \frac{1}{x} \ln x = \ln x + 1 - 1 - 5 \frac{\ln x}{x} = \ln x - -5 \frac{\ln x}{x} = f(x)$

Donc la fonction F est bien une primitive de la fonction f.

2.a. voir figure

b. Soit E le point de coordonnées (e ; 0) et F celui de coordonnées (e ; -1) et G (1 ;-1) l'aire du rectangle AEFG vaut en unité d'aire : $A = L \times l = (e-1) \times 1 = (e-1)u.a$ or l'unité d'aire vaut $u.a = 2 \times 2 = 4cm^2$, donc l'aire du rectangle AEFG est égale $A = 4(e-1) \approx 6.8cm^2$.

c.

La courbe C est en dessous de l'axe des abscisses sur l'intervalle [1;e]

Donc
$$A = \left(-\int_{1}^{e} f(x)dx\right)u.a = 4\left(-\int_{1}^{e} f(x)dx\right) = -4\left[F(e) - F(1)\right]cm^{2}.$$

$$F(e) = e \ln e - e - \frac{5}{2}\left(\ln e\right)^{2} = e - e - 2, 5 = -2, 5 \text{ et } F(1) = 1 \times \ln 1 - 1 - \frac{5}{2}\left(\ln 1\right)^{2} = 0 - 1 - 0 = -1$$
Donc $A = -4\left[F(e) - F(1)\right] = -4\left(-2, 5 + 1\right) = -4 \times \left(-1, 5\right) = 6cm^{2}$

