

Problème 2

1. Limite en $-\infty$ $\lim_{x \to -\infty} e^{2x} = 0$; $\lim_{x \to -\infty} e^{x} = 0$ Donc: $\lim_{x \to -\infty} f(x) = 16$

Donc la courbe admet une <u>asymptote horizontale</u> d'équation y = 16 en $-\infty$.

- 2. a) On développe : $(e^x 2)(e^x 8) = e^{2x} 8e^x 2e^x + 16 = e^{2x} 10e^x + 16$
- 2. b) Limite en $+\infty$: $\lim_{x\to +\infty}e^x=+\infty$, donc $\lim_{x\to +\infty}\left(e^x-2\right)=+\infty$ et $\lim_{x\to +\infty}\left(e^x-8\right)=+\infty$ Donc: $\lim_{x\to -\infty}f(x)=+\infty$
- 3. a. Pour tout réel x, on a: $f'(x) = 2e^{2x} 10e^x = 2e^x(e^x 5)$.
- 3. b) Une exponentielle étant toujours strictement positive, on a :

$$f'(x) = 0 \Leftrightarrow e^x - 5 = 0 \Leftrightarrow e^x = 5 \Leftrightarrow x = \ln 5$$

De même : $f'(x) > 0 \Leftrightarrow e^x - 5 > 0 \Leftrightarrow e^x > 5 \Leftrightarrow x > \ln 5$

On obtient donc le tableau de signe suivant pour la dérivée et les variations de la fonction :

Avec ·	$f(\ln 5) = e^{2\ln 5} - 10e^{\ln 5} + 16 = e^{\ln 25} - 10 \times 5 + 16$
, , , , , , , , , , , , , , , , , , , ,	$f(\ln 5) = 25 - 50 + 16 = -9$

х	$-\infty$		ln 5		+∞
$e^x - 5$		_	0	+	
$2e^x$		+		+	
f '(x)		_	0	+	
	16 🔨				>
f(x)	+∞	_			
			0		

4. Tableau de valeurs :

х	-3	-2	-1	0	1	2	2,2
f(x)	15,5	14,7	12,5	7	-3,8	-3,3	7,2

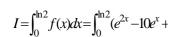
5. a) Le coefficient directeur de la droite tangente au point d'abscisse 0 est égal au nombre dérivé en 0, c'est-à-dire f'(0):

$$f'(0) = 2e^{0}(e^{0} - 5) = 2(1 - 5) = -8$$

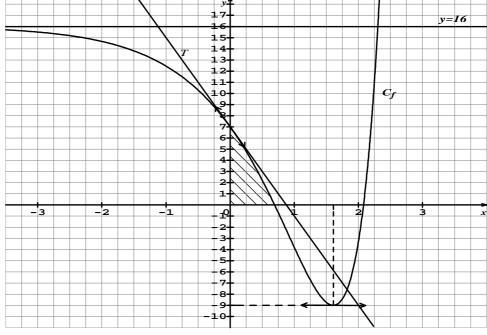
- 5. b) et 5. c) Courbe représentative
- 6.a) $f(\ln 2) = e^{2\ln 2} 10e^{\ln 2} + 16 = e^{\ln 4} 10 \times 2 + 16 = 4 20 + 16 = 0$

Sur l'intervalle $[0; \ln 2]$ la courbe est au-dessus de l'axe des abscisses, donc $f(x) \ge 0$.

b) Calcul de l'intégrale de la fonction f sur l'intervalle [0;ln2].



$$I = \int_0^{\ln 2} f(x) dx = \left(\frac{e^{2\ln 2}}{2} - 10e^{1}\right)$$



$$I = \left(\frac{e^{\ln 4}}{2} - 10 \times 2 + 16 \ln 2\right) - \left(\frac{1}{2} - 10\right) = \left(2 - 20 + 16 \ln 2\right) - \left(-\frac{19}{2}\right) = -18 + 16 \ln 2 + 9, 5 = -8, 5 + 16 \ln 2.$$

La fonction f étant positive sur $[0; \ln 2]$, alors l'intégrale est égale à l'aire en unité d'aires ; l'unité d'aire est

égale à $2 \times 0.5 = 1 cm^2$ donc : $(-8.5 + 16 \ln 2) cm^2$.

6. c) $(-8.5 + 16 \ln 2) \approx 2.59 \text{ cm}^2$

Problème 3

Partie A: Etude graphique et détermination d'une fonction

- 1. On lit: f(0) = 4f(-1) = 2
- 2. Graphiquement, on lit: f(x) < 0 pour $x < x_0$ et pour $x > x_1$; f(x) > 0 pour $x_0 < x < x_1$
- 3. a) f'(0) correspond au coefficient directeur de la tangente à C_f au point d'abscisse 0. Cette droite est T_f , elle est horizontale, donc f'(0) = 0.
 - b) f est positive quand f est croissante et négative quand f est décroissante.

On lit donc: f'(x) est positive sur [-1;0]; f'(x) est négative sur [0;2].

4.
$$f(x) = (x+a)e^{-x} + bx^2 + 3$$
 et $f'(x) = e^{-x} - (x+a)e^{-x} + 2bx$

Donc
$$f(0) = ae^0 + 3 = 2$$
, donc $a + 3 = 4 \Leftrightarrow a = 4 - 3 = 1$.

$$f(-1) = (-1+a)e^{-1} + b + 3 = 2 \iff (-1+1)e^{-1} + b + 3 = 2 \iff 0 + b = 2 - 3 \iff b = -1$$
.

On peut aussi vérifier avec f'(0). Donc $f'(0) = e^0 - (0+1)e^0 + 2b = 1 - 1 + 2b \times 0 = 0$

$$f(x) = (x+1)e^{-x} - x^2 + 3$$

Partie B : Etude de la fonction f sans utilisation graphique

1. On a: $\lim_{x \to -\infty} (x+1)e^{-x} = -\infty$ car $\lim_{x \to -\infty} (x+1) = -\infty$ et $\lim_{x \to -\infty} e^{-x} = \lim_{u \to +\infty} e^{u} = +\infty$; et : $\lim_{x \to -\infty} -x^2 + 3 = -\infty$;

Donc: $\lim_{x \to \infty} f(x) = -\infty$ $(-\infty - \infty)$

2. $\lim_{x \to +\infty} xe^{-x} = \lim_{x \to \infty} \frac{x}{e^x} = 0$, car $\lim_{x \to \infty} \frac{e^x}{x} = +\infty$ et $\lim_{x \to -\infty} -x^2 + 3 = -\infty$

Donc $\lim_{x \to +\infty} f(x) = f(x) = \lim_{x \to +\infty} ((x+1)e^{-x} - x^2 + 3) = "0 - \infty" = -\infty$

- 3. a) En se servant des formules : on a : $f'(x) = e^{-x} (x+1)e^{-x} 2x = -x(e^{-x} + 2)$
 - b) Une exponentielle est toujours strictement positive, donc $e^{-x} > 0$ et $e^{-x} + 2 > 0$ donc

 $f'(x) = -x(e^{-x} + 2)$ est du signe de -x:

4. a) Sur [1; 2], la fonction f est dérivable et strictement

décroissante de $f(1) = 2e^{-1} + 2 \approx 2,74 \, \text{à}$

 $f(2) = 3e^{-2} - 1 \approx -0.59 \text{ et } 0 \in [f(2); f(1)].$ Donc il existe

x		0		$+\infty$
f'(x)	l	- 0	+	
		▼ 4		
f(x)	-∞ /		<u> </u>	$-\infty$

donc une unique solution de l'équation $f(\alpha) = 0$ sur l'intervalle [1; 2].

4. b) On procède par encadrements successifs : $1 < \alpha < 2$: $f(1,5) \approx 1,37$ donc $1,5 < \alpha < 2$; $f(1,8) \approx 0,22$ donc $1,8 < \alpha < 2$; $f(1,9) \approx -0,18$, donc $1,8 < \alpha < 1,9$.

Partie C: Calcul d'une aire

1. a) G est définie et dérivable sur \mathbb{R} et sa dérivée vaut (on utilise les formules) :

$$G'(x) = -1 \times e^{-x} - (-x - 2)e^{-x} = (-1 + x + 2)e^{-x} = (x + 1)e^{-x} = g(x)$$

Donc G est une primitive de g sur ${\bf R}$.

- 1. b) On en déduit que la fonction $F(x) = (-x-2)e^{-x} \frac{x^3}{3} + 3x$ est une primitive de f sur **R**.
- 2. L'unité graphique est de 2 cm, donc une unité d'aire correspond à 4 cm². De plus, f est positive sur [-1; 1]. Donc l'aire A est donnée par :

$$A = 4 \int_{-1}^{1} f(x) dx = 4 [F(x)]_{-1}^{1} = 4 (F(1) - F(-1))$$

*Fomesoutra.com

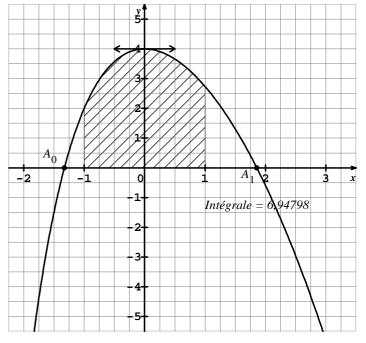
Or

 $F(1) = (-1-2)e^{-1} - \frac{1^3}{3} + 3 = -3e^{-1} - \frac{1}{3} + 3 = -3e^{-1} + \frac{8}{3}$

et $F(-1) = (+1-2)e^1 + \frac{1^3}{3} - 3 = -e + \frac{1}{3} - 3 = -e - \frac{8}{3}$

D'où

$$A=4(F(1)-F(-1))=4\left(-3e^{-1}+\frac{8}{3}-\left(-e-\frac{8}{3}\right)\right)=4\left(\frac{16}{3}-3e^{-1}+e\right)cm^{2}$$



ln 2

0

 $+\infty$

Problème 4

Partie A

- 1. La courbe passe par le point de coordonnées $(\ln 2; 2)$ donc $f(\ln 2) = 2$. La courbe passe par le point de coordonnées A(0; 3) donc f(0) = 3.
- 2. La courbe admet une tangente horizontale au point d'abscisse $\ln 2$ donc $f'(\ln 2) = 0$. La courbe admet une tangente de coefficient directeur -2 d'abscisse 0 donc f'(0) = -2.
- 3. La courbe admet une asymptote horizontale d'équation y = 6 en $-\infty$ donc $\lim_{x \to -\infty} f(x) = 6$.

Partie B

- 1. On développe : $(e^x 2)^2 + 2 = (e^x)^2 2e^x \times 2 + 2^2 + 2 = e^{2x} 4e^x + 6$. Donc : $f(x) = (e^x 2)^2 + 2$
- 2. Calcul de $f(\ln 2)$: $f(\ln 2) = (e^{\ln 2} 2)^2 + 2 = (2 2)^2 + 2 = 2$
- 3. a) On a: $\lim_{x \to -\infty} e^{2x} = \lim_{x \to -\infty} e^{x} = 0$, donc $\lim_{x \to -\infty} f(x) = 6$
- 3. b) Le calcul de cette limite prouve l'existence de l'asymptote horizontale d'équation y = 6 en $-\infty$.
- 4. On a: $\lim_{x \to +\infty} e^x = +\infty$ donc: $\lim_{x \to +\infty} (e^x 2) = +\infty$ et $\lim_{x \to +\infty} (e^x 2)^2 = +\infty$ donc $\lim_{x \to +\infty} f(x) = +\infty$

л	/ 100	x /100
5.	. a)	$f'(x) = 2e^{2x} - 4e^x = 2e^x(e^x - 2)$

- 5. b) Pour tout réel x, on a $e^x > 0$ donc: $f'(x) = 0 \Leftrightarrow e^x 2 = 0 \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln 2$
- 5. c) Pour tout réel x, on a $e^x > 0$ donc: $f'(x) > 0 \Leftrightarrow e^x 2 > 0 \Leftrightarrow e^x > 2 \Leftrightarrow x > \ln 2$
- 5. d) Signe de f'(x) et variations de f
- 6. Démontrons que l'équation f(x) = 7 admet une solution unique sur **R**
- la fonction f est dérivable sur $[\ln 2; +\infty[$;
- la fonction f est strictement croissante sur $[\ln 2; +\infty[$;
- 7 est compris entre $f(\ln 2) = 2$ et $\lim_{x \to \infty} f(x) = +\infty$;

Donc, d'après le théorème des valeurs intermédiaires, l'équation f(x) = 7 admet une solution unique α sur $[\ln 2; +\infty[$.

3

L'équation f(x) = 7 n'admet pas de solution sur $]-\infty; \ln 2]$ car f est dérivable et strictement décroissante

 $2e^x$

f'(x)

f(x)

sur $]-\infty; \ln 2]$ de 6 à 2, et 7 n'appartient pas à l'intervalle [2 ; 6]. l'équation f(x)=7 admet une unique

solution sur **R**. Encadrement de la solution $f(1) \approx 2.5$ et $f(2) \approx 31$, donc $1 \le \alpha \le 2$

$$f(1,4) \approx 6.2$$
 et $f(1,5) \approx 8.2$ donc $1,4 \le \alpha \le 1.5$

Partie C

1. Calcul de la dérivée de F

$$F'(x) = \frac{1}{2} \times 2 \times e^{2x} - 4e^x + 6 = e^{2x} - 4e^x + 6$$

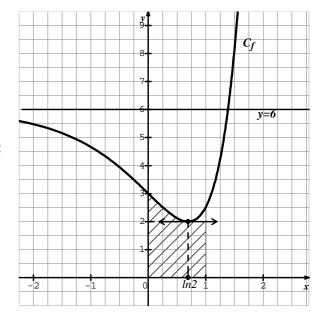
On a pour tout réel x: F'(x) = f(x) donc F est une primitive de f sur \mathbf{R} .

3. Calcul de l'intégrale de la fonction f sur l'intervalle [0 ; 1] .

$$I = \int_0^1 f(x)dx = \int_0^1 (e^{2x} - 4e^x + 6)dx = \left[\frac{e^{2x}}{2} - 4e^x + 6x\right]_0^1$$

$$I = \left(\frac{e^2}{2} - 4e + 6\right) - \left(\frac{e^0}{2} - 4e^0\right)$$

$$I = \left(\frac{e^2}{2} - 4e + 6 - \frac{1}{2} + 4\right) = \left(\frac{e^2}{2} - 4e + 9, 5\right)$$



La fonction étant positive sur [0; 1], l'aire du domaine hachuré est donné par :

$$A = u.a \times I = 1 \times 1,5 \times \left(\frac{e^2}{2} - 4e + 9,5\right) cm^2$$

Problème 5

Partie A : limites aux bornes de l'ensemble de définition

1. Calcul de la limite en $-\infty$ On a : $\lim_{x \to -\infty} e^{2x} = 0$; $\lim_{x \to -\infty} e^{x} = 0$ Donc : $\lim_{x \to -\infty} f(x) = 4$.

Donc la courbe C_f admet une asymptote horizontale d'équation y = 4 en $-\infty$.

2. a) On développe : $(e^x - 1)(e^x - 4) = e^{2x} - 4e^x - e^x + 4 = e^{2x} - 5e^x + 4$.

2. b) Calcul de la limite en $+\infty$. On a : $\lim_{x\to +\infty} e^x = +\infty$ donc : $\lim_{x\to +\infty} (e^x - 1) = +\infty$ et $\lim_{x\to +\infty} (e^x - 4) = +\infty$ donc $\lim_{x\to +\infty} f(x) = +\infty$

Partie B : Intersection de la courbe C_f avec l'axe des abscisses

Résolution de f(x) = 0: $(e^x - 1)(e^x - 4) = 0 \Leftrightarrow e^x - 1 = 0 \text{ ou } e^x - 4 = 0$ $\Leftrightarrow e^x = 1 \text{ ou } e^x = 4 \Leftrightarrow x = \ln 1 = 0 \text{ ou } x = \ln 4$

Donc les abscisses des points d'intersection avec l'axe des abscisses sont $0 et \ln 4$.

Partie C : étude des variations de la fonction f

1. a) Calcul de la dérivée, en utilisant: $f'(x) = 2e^{2x} - 5e^x = e^x(2e^x - 5)$

1. b) Une exponentielle étant toujours strictement positive, on a :

$$f'(x) = 0 \Leftrightarrow 2e^x - 5 = 0 \Leftrightarrow e^x = \frac{5}{2} \Leftrightarrow x = \ln\left(\frac{5}{2}\right)$$
. De même :

$$f'(x) > 0 \Leftrightarrow 2e^x - 5 > 0 \Leftrightarrow e^x > \frac{5}{2} \Leftrightarrow x > \ln\left(\frac{5}{2}\right)$$

On obtient le tableau de signe suivant pour la dérivée :

2. Calcul de

$$f(5/2) = e^{2\ln(5/2)} - 5e^{\ln(5/2)} + 4 = e^{\ln(5/2)^2} - \frac{25}{2} + 4$$

$$f(5/2) = \frac{25}{4} - \frac{50}{4} + \frac{16}{4} = -\frac{9}{4}$$

3. On en déduit le tableau de variations suivant :

x	$-\infty$		0		ln 4		+∞
f(x)		+	0	_	0	+	

- **4.** On en déduit le tableau de signes suivant pour la fonction *f* :
- 5. Représentation graphique

Partie D: calcul d'une aire

- 1. Soit F une primitive de f: $F(x) = \frac{e^{2x}}{2} 5e^x + 4x$
- 2. a) Soit I l'intégrale de la fonction f sur l'intervalle [0; ln 4]:

$$I = \int_0^{\ln 4} f(x)dx = \int_0^{\ln 4} (e^{2x} - 5e^x + 4)dx = \left[\frac{e^{2x}}{2} - 5e^x + 4x\right]_0^{\ln 4}$$

$$I = \left(\frac{e^{2\ln 4}}{2} - 5e^{\ln 4} + 4\ln 4\right) - \left(\frac{e^0}{2} - 5e^0\right)$$

$$I = \left(\frac{e^{\ln 16}}{2} - 5 \times 4 + 4\ln 4 - \frac{1}{2} + 5\right) = \left(4\ln 4 - \frac{15}{2}\right)$$

On a montré dans la partie précédente que la fonction f est

négative sur l'intervalle [0; ln 4], donc l'aire est donnée en unités d'aires par :

$$A = -I = -4 \ln 4 + \frac{15}{2} = 7,5 - 8 \ln 2$$

2. b) L'unité d'aire est donnée par : $1u.a = 2cm^2$ donc : $A = 2 \times (7,5 - 8 \ln 2) = 15 - 16 \ln 2 \approx 3,91cm^2$.

