

Corrigé

Exercice 1

1. Comme la roue ne peut s'arrêter que lorsque le repère est face à secteur vert, blanc ou rouge, le gain du joueur est soit + 30, soit 0, soit -10 (X prend donc les valeurs -10, 0 et + 30).

p (X = -10) est la probabilité pour qu'un secteur rouge s'arrête devant le repère. Il y a huit secteurs rouges sur quinze secteurs, et on suppose qu'il y a équiprobabilité des événements élémentaires (puisque chaque secteur a la même probabilité de s'arrêter devant le repère). Donc: $p(X = -10) = \frac{8}{15}$.

De même, il y a cinq secteurs blancs, et p(X=0) est la probabilité pour qu'un secteur blanc s'arrête devant le repère, d'où $p(X=0) = \frac{5}{15} = \frac{1}{3}$.

Enfin , il y a deux secteurs verts, et p(X = 30) est la probabilité pour qu'un secteur vert s'arrête devant le

repère, d'où $p(X = 30) = \frac{2}{15}$, on déduit la loi de probabilité de X

L'espérance mathématique de X est :

E(X) =
$$\sum_{i=1}^{3} x_i p(X = x_i) = -10 \times \frac{8}{15} + 0 \times \frac{1}{3} + 30 \times \frac{2}{15} = \frac{-80 + 60}{15} = -\frac{20}{15} = -\frac{4}{3}$$
.

\mathcal{X}_{i}	-10	0	30
$p(X = x_i)$	8	1	2
2	<u>15</u>	3	15

2 .a) X_n prend les mêmes valeurs qu'au 1., c'est-à-dire + 30, 0 et -10. Le raisonnement est identique à celui du 1., sauf que le nombre total de: secteurs est 2 + 5 + n = n + 7. D'où: $p(X_n = -10) = \frac{n}{n+7}$, puisqu'il y a n secteurs rouges.

$$p(X_n = 0) = \frac{5}{n+7}$$
, car il y a 5 secteurs blancs. $p(X_n = 30) = \frac{2}{n+7}$ car il y a 2 secteurs verts.

On peut résumer la loi de probabilité de X_n :

L'espérance mathématique de X est :

E esperance mamemanque de s	L Cot .			
$E(X_n) = \sum_{i=1}^{3} x_i p(X_n = x_i) = -10$	×_n	5 + 30)×	-10n + 60
$E(X_n) = \sum_{i=1}^n x_i p(X_n - x_i) = -10$	$\stackrel{\wedge}{n+7}$	n+7	$n \wedge \frac{1}{n+7} - \frac{1}{n+7}$	$\frac{n+7}{n+7}$.

\mathcal{X}_{i}	-10	0	30
$p(X=x_i)$		5	
	n+7	n + 7	n + 7

L'organisateur de la loterie rentre dans ses frais \underline{ssi} $E(X_n) \le -2 \Leftrightarrow \frac{-10n+60}{n+7} \le -2 \Leftrightarrow -10n+60 \le -2(n+7)$,

car n+7 > 0.
$$-10n + 60 \le -2n - 14$$
 $-8n \le -74$ soit $n \ge \frac{74}{8} = 9,25$.

Donc, le nombre minimum de cases rouges que l'organisateur doit prévoir pour ne pas être déficitaire est $n_0 = 10$.

Exercice 2

1. Comme la roue ne peut s'arrêter que lorsque le repère est face à secteur vert, blanc, rouge, ou jaune le gain du joueur est soit 100, soit 60, soit 0 ou -20 (X prend donc les valeurs -20, 0, +60 et 100).

p (X = -20) est la probabilité pour qu'un secteur rouge s'arrête devant le repère. Il y a quatorze secteurs rouges sur 24 secteurs, et on suppose qu'il y a équiprobabilité des événements élémentaires (puisque chaque secteur a la même probabilité de s'arrêter devant le repère). Donc: $p(X = -20) = \frac{14}{24} = \frac{7}{12}$.

De même, il y a six secteurs bleus, et p(X = 0) est la probabilité pour qu'un secteur bleu s'arrête devant le repère,

D'où
$$p(X = 0) = \frac{6}{24} = \frac{1}{4}$$
.

il y a trois secteurs verts, et p(X = 60) est la probabilité pour qu'un secteur vert s'arrête devant le repère, d'où

L'espérance mathématique de X est :

E (X) =
$$\sum_{i=1}^{4} x_i p(X = x_i) = -20 \times \frac{7}{12} + 0 \times \frac{1}{4} + 60 \times \frac{1}{8} + 100 \times \frac{1}{24}$$

E (X) =
$$\frac{-280+180+100}{24} = \frac{0}{24} = 0$$
. On déduit que le jeu est équitable $V(X) = \sum_{i=1}^{4} x_i^2 p(X = x_i) = 0$

$$V(X) = (-20)^2 \times \frac{14}{24} + 0^2 \times \frac{6}{24} + 60^2 \times \frac{3}{24} + (100)^2 \times \frac{1}{24} = \frac{5600 + 10800 + 10000}{24} = \frac{26400}{24} = 1100 \; ; \; \sigma(X) = \sqrt{1100} \approx 33,17$$
 2. a) X n prend les mêmes valeurs qu'au 1., c'est-à-dire + 100, +60 ; 0 et -20. Le raisonnement est identique à celui du

2. a) X_n prend les mêmes valeurs qu'au 1., c'est-à-dire + 100, +60 ; 0 et -20. Le raisonnement est identique à celui du 1, sauf que le nombre total de: secteurs est 6 +3 +1+ n = n + 10. D'où : $p(X_n = -20) = \frac{n}{n+10}$ puisqu'il y a n secteurs

rouges
$$p(X_n = 0) = \frac{6}{n+10}$$
, car il y a 6 secteurs bleus. $p(X_n = 60) = \frac{3}{n+10}$, car il y a 3 secteurs verts.

 $p(X_n = 100) = \frac{1}{n+10}$, car il y a un secteur jaune. On peut résumer la loi de probabilité de X_n :

$$x_i$$
 -20 0 60 100
 $p(X = x_i)$ $\frac{n}{n+10}$ $\frac{6}{n+10}$ $\frac{3}{n+10}$ $\frac{1}{n+10}$

L'espérance mathématique de X est : E (X) = $\sum_{i=1}^{4} x_i p(X = x_i) = -20 \times \frac{n}{n+10} + 0 \times \frac{6}{n+10} + 60 \times \frac{3}{n+10} + 100 \times \frac{1}{n+10} = -20 \times \frac{n}{n+10} + \frac{1}{n+10} = -20 \times \frac{n}{n+10} = -20 \times \frac{n}{n+10}$

E (X) =
$$\frac{-20n+180+100}{n+10} = \frac{-20n+280}{n+10}$$
.

L'organisateur de la loterie réalise 15 % de bénéfices sur chaque mise c'est-à-dire $\frac{15}{100} \times 20 = 3$; donc le joueur perd

en moyenne 3 € pour chaque mise d'où E (X) ≤ -3 \underline{ssi} E (X_n) ≤ -3 ssi $\frac{-20n + 280}{n + 10} \leq -3$;

$$s\underline{s}\underline{i} - 20n + 180 \le -3(n+10)$$
, car $n+10 > 0$; $s\underline{s}\underline{i} - 20n + 280 \le -3n - 30$. $S\underline{s}\underline{i} - 17n \le -310$ soit $n \ge \frac{310}{17} \approx 18,23$.

Donc, le nombre minimum de cases rouges que l'organisateur doit prévoir pour ne pas être déficitaire est $n_0 = 19$.

Exercice 3

1-Lorsqu'un ordinateur est en panne, cela peut provenir:

Soit d'un seul composant en panne : il y a dans ce cas trois diagnostics possibles symbolisés par :

$$(A;CG;P)$$
; $(A;CG;P)$; $(A;CG;P)$

Soit de deux composants en panne : il y a dans ce cas trois diagnostics possibles symbolisés par :

 $(\overline{A}; \overline{CG}; P)$; $(\overline{A}; \overline{CG}; \overline{P})$; $(A; \overline{CG}; \overline{P})$. Soit des trois composants en panne simultanément: c'est le cas $(\overline{A}; \overline{CG}; \overline{P})$.

Donc on a : E =
$$\left\{ (\overline{A}; CG; P) ; (A; \overline{CG}; P) ; (\overline{A}; \overline{CG}; P) ; (\overline{A}; \overline{CG}; P) ; (\overline{A}; \overline{CG}; \overline{P}) ; (\overline{A}; \overline{CG}; \overline{P})$$

2- soit B l'événement « un seul composant est en panne » cet événement est formé de trois issues favorables L'univers E est formé de sept issues possibles .Puisqu'on suppose l'équiprobabilité de sept diagnostics

On a donc :
$$P(B) = \frac{3}{7}$$
.

- 3.a) Si seule l'alimentation est en panne, le coût de la réparation est 80 + 25 = 105 €
 - Si seule la carte graphique est en panne, le coût de la réparation est 160 + 25 = 185 €
 - Si seul le processeur est en panne, le coût de la réparation est 80 + 25 = 105 €
 - Si l'alimentation et la carte graphique sont en panne, le coût de la réparation est 80 +160+ 25 = 265 €
 - Si l'alimentation et le processeur sont en panne, le coût de la réparation est 80 +80+ 25 = 185 €
 - Si la carte graphique et le processeur sont en panne, le coût de la réparation est 180 +80+ 25 = 265 €
 - Si les trois composants sont en panne, le coût de la réparation est : 80+160+80+25 = 345 €
 - Donc la liste des valeurs possibles de X est : $X = \{105; 185; 265; 345\}$
- 3.b) Pour 105 \leqslant on a deux cas favorables : $(\overline{A}; CG; P)$ et $(A; CG; \overline{P})$, donc $P(X = 105) = \frac{2}{7}$.

Pour 185 \in on a deux cas favorables : $(A; \overline{CG}; P)$ et $(\overline{A}; CG; \overline{P})$, donc $P(X = 185) = \frac{2}{7}$

Pour 265 \in on a deux cas favorables : $(\overline{A}; \overline{CG}; P)$ et $(A; \overline{CG}; \overline{P})$, donc $P(X = 265) = \frac{2}{7}$

Pour 345 \in on a un seul cas favorable : $(\overline{A}; \overline{CG}; \overline{P})$, donc $P(X = 345) = \frac{1}{7}$.

Pour 345 €, on a un seul cas favorable :
$$(A; CG; P)$$
, donc $P(X = 345) = \frac{1}{7}$. $X = x_i$

$$3.c)_{E(X)} = \sum_{i=1}^{4} x_i \times P(X = x_i), \text{ donc } E(X) = 105 \times \frac{2}{7} + 185 \times \frac{2}{7} + 265 \times \frac{2}{7} + 345 \times \frac{1}{7}$$

$$210 + 370 + 530 + 345, 1455$$

$$X = x_i$$
 105 185 265 345
 $P(X = x_i)$ $\frac{2}{7}$ $\frac{2}{7}$ $\frac{2}{7}$ $\frac{1}{7}$

 $E(X) = \frac{210 + 370 + 530 + 345}{7} = \frac{1455}{7} \approx 208 \in$. le coût moyen de réparation est 208 \in .

3.d) le prix moyen d'une réparation est de 208 €pour un forfait de 25 € Si on diminue ce forfait 8 € le prix moyen de réparation va passer à 200 €. En effet : dans ce cas X prend 97 ; 177 ; 257 ; 337

On a alors:
$$E(X) = 97 \times \frac{2}{7} + 177 \times \frac{2}{7} + 257 \times \frac{2}{7} + 337 \times \frac{1}{7}$$
; $E(X) = \frac{194 + 314 + 514 + 337}{7} = \frac{1399}{7} \approx 200 \in$

$$E(X) = (80+c) \times \frac{2}{7} + \left(160+c\right) \times \frac{2}{7} + \left(240+c\right) \times \frac{2}{7} + \left(320+c\right) \times \frac{1}{7} \cdot 7E(X) = (80+c) \times 2 + \left(160+c\right) \times 2 + \left(240+c\right) \times 2 + \left(320+c\right) \times$$

$$7 \times 200 = 160 + 160 + 480 + 320 + 2c + 2c + 2c + c$$
; $1400 = 7c + 1280$ soit $7c = 1400 - 1280 = 120$ et $c = \frac{120}{7} \approx 17 \in \mathbb{R}$.

Exercice 4

- 1. a) soit A l'événement « obtenir un bouton à 2 trous », donc $P(A) = \frac{21 + 24 + 18}{150} = \frac{63}{150} = \frac{21}{50} = 0,42$
- b) soit B l'événement « obtenir Un bouton de 14mm de diamètre» $P(B) = \frac{18+12+27}{150} = \frac{57}{150} = \frac{19}{50} = 0,38$
- c) soit C l'événement « obtenir Un bouton à 3 trous de 10mm de diamètre» $P(C) = \frac{15}{150} = \frac{1}{10} = 0.1$

d) soit D l'événement « obtenir Un bouton de diamètre inférieur à 12mm »
$$P(D) = \frac{21 + 24 + 12 + 15 + 9}{150} = \frac{81}{150} = \frac{27}{50} = 0,54$$

- 2. a) $\{X=6\}$ correspond à l'événement « Un bouton de 6mm de diamètre », donc $P(X=6) = \frac{33}{150} = \frac{11}{50} = 0,22$
- b) soit X la variable aléatoire qui à chaque bouton tiré associe son diamètre en mm, donc : $X = \{6; 10; 14; 18\}$

χ_i	6	10	14	18
$P((X = x_i))$	$\frac{33}{1} = \frac{11}{1}$		$\frac{57}{} = \frac{19}{}$	$\frac{12}{1} = \frac{2}{1}$
	150 50	150 25	150 50	150 25

$$\sum_{i=1}^{i=4} P(X=x_i) = \frac{33}{150} + \frac{48}{150} + \frac{57}{150} + \frac{12}{150} = \frac{33 + 48 + 57 + 12}{150} = \frac{150}{150} = 1, \text{ donc X définie bien une loi de probabilité}$$

c)
$$E(X) = \frac{6 \times 33 + 10 \times 48 + 14 \times 57 + 18 \times 12}{150} = \frac{1692}{150} = 11,26$$

d)
$$E(X) = \frac{36 \times 33 + 100 \times 48 + 196 \times 57 + 324 \times 12}{150} - \left[E(X)\right]^2 = \frac{21048}{150} - \left(\frac{1692}{150}\right)^2 = 140,32 - 127,24 = 13,08$$

d'où $\sigma_X = \sqrt{13,08} \approx 3,6$ à 10^{-2} près.

Exercice 4

- 1. a) voir tableau ci-dessous
- b) tous les quartiers ont la même probabilité de s'arrêter devant le repère, donc tous les gains du tableau sont équiprobables . dans le tableau , apparaissent en gras les gains supérieurs ou égaux à la mise .

Fomesoutra.com

Il y a 8cas possibles sur le 16 existants donc $p(G \ge 10) = p(G = 10) + p(G = 15) + p(G = 20) = \frac{5}{16} + \frac{1}{8} + \frac{1}{16} = \frac{8}{16} = \frac{1}{2}$ soit 50 %.

c) P(G = 0) = 4/16 = 1/4 ; P(G = 5) = 4/16 = 1/4;

P(G = 10) = 5/16 ; P(G = 15) = 2/16 = 1/8;

P(G = 20) = 1/16.

G	0	5	10	15	20
p_i	4	4	5	2 1	1
	16	16	16	$\frac{-}{16} = \frac{-}{8}$	16

d)
$$p(G>10) = p(G=15) + p(G=20) = \frac{1}{8} + \frac{1}{16} = \frac{3}{16}$$
.

Roue n° 1	10	0	5	0
Roue n°2				
10	20	10	15	10
0	10	0	5	0
5	15	5	10	5
10	10	0	5	0

e)
$$E(G) = 0 \times \frac{1}{4} + 5 \times \frac{1}{4} + 10 \times \frac{5}{16} + 15 \times \frac{1}{8} + 20 \times \frac{1}{16} = \frac{5}{4} + \frac{50}{16} + \frac{15}{8} + \frac{20}{16} = \frac{10}{8} + \frac{25}{8} + \frac{15}{8} + \frac{10}{8} = \frac{60}{8} = \frac{15}{2} = 7,5$$

Le gain moyen est donc de 7,5 €<10 donc le jeu n'est pas équitable et le joueur risque de perdre de l'argent (mais l'association va en gagner .. L'espérance de gain est donc plus petite que la mise.

2.
$$G' = m - G$$
; $E(G') = E(m - G) = m - E(G) = m - 7.5$.

G'	m	m-5	m-10	m-15	m-20
p_i	4	4	5	$\frac{2}{2} = \frac{1}{2}$	1
	16	16	16	16 8	16

$$E(G') = m \times \frac{1}{4} + (m-5) \times \frac{1}{4} + (m-10) \times \frac{5}{16} + (m-15) \times \frac{1}{8} + (m-20) \times \frac{1}{16} = m-7,5$$

b) $E(G') \ge 5$ équivaut à m − 7,5 ≥5 soit m ≥12,5 € Pour que l'espérance de bénéfice de l'association soit d'au moins 5 euros, il faut donc que la mise soit d'au moins 12,5 €...

Exercice 5

1.voir l'arbre ci-contre

2.a. Soit X la variable aléatoire égale au gain associé à un tirage de deux boules.

Soit la première boule est rouge et la seconde bleue

alors X = 0. rouge + bleu $\Leftrightarrow 2+1 = 3$ euros donc gains de 0 euros

Soit la première boule est rouge et la seconde verte

alors X = 4. rouge + verte \Leftrightarrow 2+5 = 7 euros donc gains de 4 euros Soit la première boule est jaune et la seconde bleue

alors X = 1. jaune + bleu \Leftrightarrow 3+1 = 4 euros donc gains de 1 euros

alors X = 1. Jaune + bleu $\Leftrightarrow 3+1 = 4$ euros donc gains de 1 euros Soit la première boule est jaune et la seconde verte

jaune + verte \Leftrightarrow 3+5 = 8 euros donc gains de 5 euros, alors X = 5.

Donc $X \in \{0; 1; 4; 5\}.$

b. On a deux chances sur cinq de tirer une boule jaune dans la première urne.

On a une chance sur cinq de tirer une boule verte dans la seconde urne.

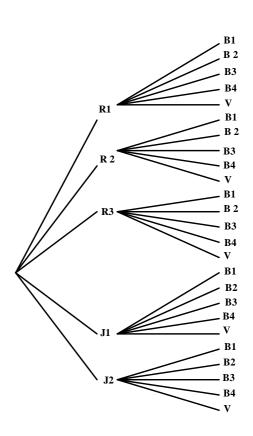
Les deux tirages étant indépendant (puisqu'il ne se font pas dans la même

urne), on a:
$$p(X = 5) = p(J \cap V) = \frac{2}{5} \times \frac{1}{5} = \frac{2}{25}$$

La valeur X = 5 correspond aux tirages jaunes, vert. Il y a deux tirages de cette sorte et 25 tirages sont possibles donc $p(X = 5) = \frac{2}{25}$.

c : on trouve de la même façon que : $p(X=0) = p(R \cap B) = \frac{3}{5} \times \frac{4}{5} = \frac{12}{25}$;

$$p(X=1) = p(J \cap B) = \frac{2}{5} \times \frac{4}{5} = \frac{8}{25}$$



 $p(X=4) = p(R \cap V) = \frac{3}{5} \times \frac{1}{5} = \frac{3}{25}$ on en déduit donc le tableau suivant :

d. Si le gain du joueur ne dépasse pas 1€alors *X* ≤ 1 d'où X = 0 ou X = 1.

X=k	0	1	4	5
p(X=k)	12	8	3	2
	25	25	25	25

Donc la probabilité de cet évènement sera : $p(X \le 1) = p(X = 0 \text{ ou } X = 1) = p(X = 0) + p(X = 1) = \frac{12}{25} + \frac{8}{25} = \frac{20}{25} = \frac{4}{5}$

3.a.
$$E(X) = 1 \times \frac{8}{25} + 4 \times \frac{3}{25} + 5 \times \frac{2}{25} = \frac{1}{25} (8 + 12 + 10) = \frac{30}{25} = \frac{6}{5} = 1,2$$

b. Si le jeu est déficitaire avec une espérance de gain de 1,2 euros, pour compenser cela, le comité devrait demander une unité minimale de 3 + 1,2 € soit 5€minimum.

il faut au minimum une mise de 5 euros pour que le jeu devienne favorable au comité.

Exercice 6

1. On compte séparément les doubles et les non doubles.

Il y a 7 doubles : $D = \{(0,0); (1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\}$ le double zéro , le double 1le double 6.

Pour les non-doubles ,pour dénombrer, on peut faire un tableau ou un arbre . on notera par exemple (1;4) le domino comportant une case avec 1 point et une case avec 4 points.

 $ND = \{(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(4,6$

Il y a 21 dominos non doubles et 7 doubles, il y a au total 28 dominos dans ce jeu.

2-a) Soit D l'événement « obtenir un double » D l'événement « obtenir un domino non double »

il y a 7 dominos doubles et 21 non doubles donc $p(D) = \frac{7}{28} = \frac{1}{4}$ et $p(\overline{D}) = 1 - \frac{7}{28} = \frac{21}{4} = \frac{3}{4}$

b) Soit C l'événement

« obtenir un domino dont la somme des nombres situés sur les deux faces soit divisible par 3 » le nombre de dominos dont la somme des nombres situés sur les deux parties soit divisible par 3 est 10

$$C = \{(0;0);(0;3);(3;3);(0;6);(1;2);(1;5);(2;4);(3;6);(4;5);(6;6);\}$$
 et on a : $p(C) = \frac{10}{28} = \frac{5}{14}$

4-a) les valeurs prises par X sont : 0 ; 1 ; 2 ; 3 ; 4 ; 5

En effet: 0; 0-0; 1-1; 2-2; 3-3; 4-4; 5-5; 6-6 il y 7 fois 0

$$p(X=0) = \frac{7}{28} = \frac{1}{4}$$

$$p(X=1) = \frac{6}{28} = \frac{3}{14}$$

$$p(X=2) = \frac{5}{28}$$

$$p(X=3) = \frac{4}{28} = \frac{1}{7}$$

$$p(X=4) = \frac{3}{28}$$

$$p(X=5) = \frac{2}{28} = \frac{1}{14}$$

$$p(X=5) = \frac{1}{28}$$

$X = x_i$	0	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{4}$	$\frac{3}{14}$	$\frac{5}{28}$	$\frac{1}{7}$	$\frac{3}{28}$	$\frac{1}{14}$	$\frac{1}{28}$

 $\sum_{i=0}^{6} P(X=i) = \frac{7}{28} + \frac{6}{28} + \frac{5}{28} + \frac{4}{28} + \frac{3}{28} + \frac{2}{28} + \frac{1}{28} = \frac{28}{28} = 1 \text{ par conséquent X définit bien un loi de probabilité.}$

b)
$$\sum_{i=0}^{6} x_i \times P(X=i) = 0 \times \frac{7}{28} + 1 \times \frac{6}{28} + 2 \times \frac{5}{28} + 3 \times \frac{4}{28} + 4 \times \frac{3}{28} + 5 \times \frac{2}{28} + 6 \times \frac{1}{28}$$

$$\sum_{i=0}^{6} x_i \times P(X=i) = \frac{7 \times 0 + 1 \times 6 + 2 \times 5 + 3 \times 4 + 4 \times 3 + 5 \times 2 + 6 \times 1}{28} = \frac{0 + 6 + 10 + 12 + 12 + 10 + 6}{28} = \frac{56}{28} = 2$$

Complément

3-a)Soit A l'événement « il y a au moins un 3 sur le domino » $A = \{(0;3);(1;3);(2;3);(3;3);(3;4);(3;5);(3;6)\}$.

$$p(A) = \frac{7}{28} = \frac{1}{4}$$
.

Soit B l'événement « la somme des point du domino est égale à 6 ». $B = \{(3;3); (0;6); (1;5); (2;4)\}$

$$p(B) = \frac{4}{28} = \frac{1}{7}$$

b) A et B sont des événements ne sont pas disjoints (A et B ont un élément (3;3) en commun).

Or
$$A \cap B = \{(3,3)\}$$
, donc $p(A \cap B) = p(\{(3,3)\}) = \frac{1}{28}$

Donc
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 et on a : $P(A \cup B) = \frac{7}{28} + \frac{4}{28} - \frac{1}{28} = \frac{5}{28} = \frac{5}{14}$; $P(A \cup B) = \frac{5}{14}$.

Soit G l'événement « le domino a une partie à 3 points » . $G = \{(0;3);(1;3);(2;3);(3;4);(3;3)(3;5);(3;6)\}$ $p(G) = \frac{7}{28} = \frac{1}{4}$

Soit H l'événement « le domino a une partie à 5 points » . $H = \{(0;5);(1;5);(2;5);(3;5);(4;5);(5;5);(5;6)\} \cdot p(H) = \frac{7}{28} = \frac{1}{4}$

b) G et H ne sont pas disjoints (A et B ont un élément (3;5) en commun).

Or
$$G \cap H = \{(3,5)\}$$
, donc $P(G \cap H) = p(\{(3,5)\}) = \frac{1}{28}$

Donc
$$P(G \cup H) = P(G) + P(H) - P(G \cap H)$$
 et on a : $P(G \cup H) = \frac{7}{28} + \frac{7}{28} - \frac{1}{28} = \frac{13}{28}$; $P(G \cup H) = \frac{13}{28}$.