

LYCEE SCIENTIFIQUE

ANNEE SCOLAIRE: 2021-2022

DEVOIR DE MATHEMATIQUES TERMINALE C Durée : 1 h 50

EXERCICE 1

Écris, sur ta feuille de copie, le numéro de chaque affirmation suivi de Vrai si l'affirmation

est vraie ou de Faux si l'affirmation est fausse.

-	raie ou de Faux si l'affirmation est fausse.
N°	Affirmation
1.	Le plus petit entier n tel que $\left(\frac{1}{3}\right)^n \le 0,01$, est 4.
2.	$\lim_{x \to 0} \frac{1}{x \ln x - x} = +\infty.$
	Le plan (\mathscr{P}) d'équation cartésienne : $x + y + z - 5 = 0$ et La droite (\mathscr{D})
2	$\begin{cases} x = 2t + 4 \end{cases}$
3.	
	de représentation paramétrique : $\{ y = -3t - 5, t \in \mathbb{R} \}$
	z = t + 8
	sont sécants.
-	
	Le plan (\mathscr{P}) d'équation cartésienne : $2x - 3y + 4z - 11 = 0$ et La droite (\mathscr{D})
3.	x = 5t + 4
	de représentation paramétrique : $\{ y = 3 , t \in \mathbb{R} \}$
10	de représentation paramétrique : $\begin{cases} y = 3 \\ z = 2t \end{cases}, t \in \mathbb{R}$
1	
	sont sécants.

EXERCICE 2

On considère l'espace muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère le plan (\mathcal{P}) d'équation cartésienne : 2x - y + z - 1 = 0 et le point B(1, -1, 1).

- 1) a) B appartient-il à (\mathcal{P}) .
 - b) Détermine une équation cartésienne du plan (\mathcal{P}') parallèle à (\mathcal{P}) et passant par le point B.
- 2) Détermine une représentation paramétrique de la droite (D) passant par B et perpendiculaire au plan (\mathcal{P}).
- 3) Détermine les coordonnées de A, point d'intersection de la droite (D) et du plan (P).

- 4) Détermine la distance entre les plans (P) et (P').
- 5) On considère le plan (\mathcal{P}'') d'équation cartésienne : z=1 . Détermine les représentations paramétriques respectives des droites D1 et D2 intersection des plans avec le plan
 - a) Détermine la position relative du plan (\mathcal{P}) avec les plan (\mathcal{P}) et (\mathcal{P}'') .
 - b) Détermine les représentations paramétriques respectives des droites (D_1) et (D_2) intersections des plans (\mathcal{P}) et (\mathcal{P}') avec le plan (\mathcal{P}'') .

EXERCICE 3

On considère la fonction f définie par : $f(x) = x^2 \ln \left(1 + \frac{1}{x}\right)$.

- 1) Détermine l'ensemble de définition de f.
- 2) f est-elle prolongeable par continuité en 0 ? Si, oui étudie la dérivabilité en 0 de son prolongement par continuité g.
- 3) a) f est-elle continue en -1?
 - b) f est-elle dérivable en -1?
- 4) Calcule la limité de f en $+\infty$.
- 5) On suppose que f est dérivable sur] 1;0[. Calcule f'(x).