Gravitation - satellite terrestre

d'après concours GEIPI 2000

La force de gravitation s'exerçant entre la terre et le soleil vaut F=3,5 10²² N. Connaissant la constante de gravitation G=6,67 10⁻¹¹ SI, la masse de la terre Mt =6 10²⁴ kg et la distance terre soleil d=1,5 10⁸ km, exprimer en fonction des données la masse Ms du soleil puis calculer sa valeur numérique.

Un satellite assimilé à un point matériel de masse m décrit d'un mouvement uniforme dans le champ de gravitation de la terre une orbite circulaire à l'altitude h= 400 km. L 'orbite est située dans le plan équatorial de la terre et le rayon terestre a pour valeur R=6400 km.

- Déterminer dans le repère géocentrique la vitesse V du satellite en fonction de G, Mt et r (r étant le rayon de la trajectoire). Calculer la valeur numérique de V.
- -Déterminer dans le même repère, les expressions littérales et les valeurs numériques de la période T et de la vitesse angulaire ω du satellite.

Le mouvement de ce satellite obéit à la troisième loi de Képler qui a pour expression (choisir l'expression correcte)

$$\frac{r^{3}}{T^{2}} = \frac{GMt}{4\pi^{2}} \quad \frac{r^{3}}{T^{2}} = \frac{4\pi^{2}}{GMt} \quad \frac{r^{2}}{T^{3}} = \frac{GMt}{4\pi^{2}} \quad \frac{r^{2}}{T^{3}} = \frac{4\pi^{2}}{GMt}$$
(1)
(2)
(3)
(4)

The second of the contraction of the contract

Déterminer en fonction de Mt, G, R et T=86400s (période de révolution de la terre sur son axe), l'altitude h_0 à laquelle un satellite en orbite circulaire équatoriale autour de la terre doit évoluer pour qu'il soit géostationnaire. Calculer la valeur numérique de h₀.

corrigé

force de gravitation proportionnelle aux masses et inversement proportionnelle au carré de la distance

 $F = G Mt Ms / d^2$ masse en kg et distance en m.

 $d = 1.5 \cdot 10^{11} \text{ m}$

Ms = F
$$d^2$$
 / (G Mt) = 3,5 $10^{22} * 10,5^2 10^{22}$ / (6,67 $10^{-11}*6 10^{24}$) = $1.96 10^{30}$ kg.

Le satellite est soumis uniquement à la force de gravitation centripète F=G Mt m / r² le mouvement est circulaire uniforme.

l'accélération normale est égale à : $a_N = V^2 / r$

la relation fondamentale de la dynamique (2ème loi de Newton) projetée sur l'axe n de la base de frenet donne:

$$V^2 / r = G Mt / r^2$$

d'où
$$V^2 = G Mt / r$$
 avec $r = (6400+400) 10^3 = 6,8 10^6$ mètres

$$V^2 = 6.67 \cdot 10^{-11} * 6 \cdot 10^{24} / 6.8 \cdot 10^6 = 5.88 \cdot 10^7$$
.

V = 7668 m/s.

la période est la durée nécessaire pour parcourir une circonférence à la vitesse V

$$2\pi r = V T$$

$$4\pi^2 r^2 = V^2 T^2$$

remplacer V² par l'expression ci dessus.

$$4\pi^2 r^2 = G Mt T^2 / r$$

soit
$$T^2 = 4 \pi^2 r^3 / (G Mt) (3^{eme} loi de Kepler)$$

l'expression (1) est correcte.

$$T^2 = 4*3,142*(6,8 \ 10^6)^3 / (6,67 \ 10^{-11}*6 \ 10^{24})$$
 d'où $T = 5558$ s.

la vitesse angulaire est égale à : $\omega = 2\pi$ / T = 6,28 / 5558 = 1,13 10^{-3} rad/s.

avec $r = R + h_0$. $r^3 = (8,64 \cdot 10^4)^2 *6,67 \cdot 10^{-11} *610^{24} /(4*3,14^2) = 75,75 \cdot 10^{21} \text{ m}^3$. $r = 4,237 \cdot 10^7 \text{ m} = 42370 \text{ km}$

 $h_0 = 42300-6400 = 35970 \text{ km}.$

 $[\]overline{r^3 = T^2 \text{ G Mt } / (4 \pi^2)}$ d'après la $3^{\text{\`e}me}$ loi de Képler.