CLASSE : Terminale C Année scolaire 2008/2009 Travaux dirigés de chimie : Couple acide/base ; classification

EXERCICE 1

- 1. Définir selon BRONSTED : un acide ; une base et un couple acide / base.
- 2-1 Ecrire l'équation d'équilibre entre un acide faible AH et sa base conjuguée A⁻
- 2-2 Donner l'expression de la constante d'acidité du couple AH/A⁻.
- 3. On prépare deux solutions s à 0,1 mol .L -1. L'une d'un monoacide AH et l'autre d'une monobase B ; Les pH respectifs sont 3,1 et 10.
 - 3-1 Déterminer le pKa des couples AH/A⁻ et BH⁺/B.
 - 3-2 Quel est de AH et BH⁺ l'acide le plus fort ?
 - 3-3 Quelle est de A et B, la base la plus forte?

EXERCICE 2

Une solution d'acide éthanoïque de concentration molaire volumique C a un pH = 3,5 ; le pKa du couple CH₃COOH/CH₃COO est 4,8

- 1. Déterminer la concentration molaire des espèces chimiques présente dans cette solution.
- 2. Calculer la concentration initiale C de l'acide éthanoïque dans cette solution
- 3. Déterminer la masse d'acide éthanoïque pur contenue dans 100cm³ de solution de pH = 3,5.

EXERCICE 3

Le couple ion éthylammonium / éthylamine $C_2H_5NH_3^+/C_2H_5NH_2$ a un pKa de 10,8.

- 1. On considère une solution aqueuse d'éthylamine de pH = 11 à 25° C
- 1.1 Quelles sont les espèces chimiques présentes en solution?
- 1.2 Déterminer leur concentration molaire.
- 1.3 En déduire la concentration de la solution initiale.
- 2. Quels volumes de solutions d'éthylamine et de chlorure d'éthylammonium de concentrations molaires respectives 0,1 mol/L et 0,1 mol/L doit-on mélanger pour obtenir 30 cm³ de solution de pH = 11,2 à 25°C

On admet que le chlorure d'éthylammonium est totalement dissocié en solution aqueuse en ions éthylammonium et chlorure.

EXERCICE 4

Une solution aqueuse d'éthanoate de sodium de concentration molaire 0,1 mol. L⁻¹ a un pH égal à 8,9.

- 1. La solution est-elle acide, basique ou neutre?
- 2. On mélange 10 mL de cette solution à 20 mL d'une solution aqueuse d'acide éthanoïque de concentration molaire 0,1 mol/L. le pH du mélange est 4,5.
- 2.1 Quelles sont les espèces chimiques présentes dans la solution ? Calculer leur concentration molaire.
- 2.2 Calculer la constante d'acidité et le pKa de l'acide éthanoïque.

EXERCICE 5

On dissout un volume V d'ammoniac (NH₃) gazeux dans

 V_a =100mL d'une solution aqueuse A de chlorure d'ammonium de concentration C_a = 0,1 mol .L ⁻¹. On obtient alors une solution B dont le pH est égal à 8,6. Le volume de B est le même que celui de A.

- 1. Ecrire l'équation de dissociation de l'ammoniac en solution aqueuse.
- 2.1 Faire l'inventaire des espèces chimiques présentes dans la solution B.
- 2.2 Calculer leur concentration molaire volumique (sauf celle de NH_3).
- 3. Le pKa du couple NH₄⁺/NH₃ est 9,2.
- 3.1 Calculer la concentration molaire volumique de NH_3 dans la solution B.
- 3.2 Déterminer le volume V d'ammoniac dissout dans les conditions normales (C.N.T.P)

EXERCICE 6

A un volume V_a = 40mL d'acide méthanoïque (HCOOH) de concentration molaire volumique C_a = 10^{-2} mol/L , On ajoute un volume V_b = 10mL de méthanoate de sodium (HCOONa) de concentration C_b = 10^{-2} mol/L . Le pH du mélange est alors de 3,3.

- 1.1 Calculer la concentration des espèces chimiques présentes dans le mélange.
- 1.2 Préciser les espèces majoritaires, minoritaires et ultra minoritaires.
- 2. Calculer le pKa du couple HCOOH/ HCOO⁻, ainsi que la constante d'acidité Ka.
- 3. Soit les couples NH_4^+/NH_3 et $C_6H_5NH_3^+/C_6H_5NH_2$ de pKa respectifs 9,2 et 4,6.

- 3.1 Comparer les forces des trois bases HCOO⁻, NH₃, et C₆H₅NH₂.
- 3.2 On suppose que ses trois couples sont dans la solution. Préciser les espèces chimiques qui prédominent lorsque le pH de cette solution vaut 4,6

EXERCICE 7

On considère acide / base : ion éthylammonium / méthylamine : $CH_3NH_3^+/CH_3NH_2$

- 1. Ecrire l'équation de la réaction de la méthylamine avec l'eau
- 2. A un volume $V_1 = 20 \text{cm}^3$ d'une solution aqueuse de méthylamine de concentration $C_1 = 10^{-1}$ mol/L , on ajoute un volume $V_2 = 10 \text{cm}^3$ d' une solution de chlorure de éthylammonium ($CH_3NH_3^+$; CI^-) de concentration $C_2 = 2 \cdot 10^{-1}$ mol /L. Le pH du milieu est égal à 10, 6.
- 2.1 Dresser la liste des espèces chimiques présentes dans le milieu.
- 2.2 Calculer leurs concentrations molaires volumiques.
- 3.1 Calculer la constante d'acidité Ka ainsi que le pKa du couple CH₃NH₃⁺/CH₃NH₂
- 3.2 Comparer la valeur du pKa trouvée à celle du pKa du couple NH_4^+/NH_3 qui vaut 9, 2. On négligera les concentrations des ions H_3O^+ et OH^- devant celle des ions CI^- .

On donne pKa du couple $NH_4^+/NH_3 = 9.2$

EXERCICE 8

On dissout 12 mL de gaz ammoniac (NH $_3$) dans V_e = 500 mL d'eau pure. Le pH de la solution obtenue est égal à 10,1.

- 1. Calculer la concentration C_b de la solution d'ammoniac obtenue.
- 2. L'ammoniac est-elle une base forte ou faible? Justifier votre réponse.
- 3. Ecrire l'équation-bilan de sa réaction avec l'eau en indiquant les couples acide-base qui interviennent dans cette réaction.

4.

- 4.1 Faire l'inventaire de toutes les espèces chimiques présentes dans la solution.
- 4.2 Calculer leur concentration molaire volumique.
- 4.3 En déduire le coefficient d'ionisation α_1 de l'ammoniac dans l'eau.

- 5. On ajoute à la solution précédente, V_a = 500 mL d'une solution de chlorure d'ammonium(NH₄Cl) de concentration C_b = 10^{-3} mol. L⁻¹. Le pH du mélange obtenu est égal à 9,2.
- 5.1 Faire l'inventaire de toutes les espèces chimiques présentes dans la solution.
- 5.2 Calculer leur concentration molaire volumique.
- 5.3 Calculer le coefficient d'ionisation α_2 de l'ammoniac dans le mélange.
- 5.4 Donner une interprétation qualitative de ce résultat.

<u>Donnée</u>: volume molaire gazeux : $V_m = 24L$. mol¹

EXERCICE 9

- 1. On dissout dans l'eau 10^{-2} mol d'acide benzoïque C_6H_5COOH de façon à obtenir un litre de solution S_1 . La mesure du pH de cette solution donne pH = 3,1.
- 1.1 Calculer la concentration des espèces chimiques présentes dans S_1 .
- 1.2 Justifier l'affirmation «l'acide benzoïque est un acide faible».
- 1.3 Ecrire l'équation-bilan de la réaction de l'acide benzoïque avec l'eau. Donner l'expression de la constante d'acidité Ka de ce couple acide / base (couple 1) et calculer son pKa.
- 2. Les deux espèces chimiques de formules $C_2H_5NH_2$ et $C_2H_5NH_3^+$ sont les deux formes conjuguées d'un même couple acide / base (couple 2) dont le pKa est égal à 10,7.
- 2.1 Quelle est dans le couple 2, la forme acide? Justifier la réponse.
- 2.2 Ecrire l'équation-bilan de la réaction du chlorure d'éthylammonium ($C_2H_5NH_3CI$) avec l'eau qui conduit à la solution aqueuse S_2 .
- 3.1 Préciser l'espèce chimique la plus acide, l'espèce chimique la plus basique.
- 3.2 La solution S_2 a une concentration molaire 10^{-2} mol. L^{-1} , son pH est-il supérieur ou inférieur à celui de la solution S_1 ? Justifier la réponse.

