CORRIGE ET BAREME

CORRIGE			
Exercice 1 2 points			
1. VRAI; 2. FAUX; 3. FAUX; 4. VRAI ———→	0,5pts ×4		
Exercice 2 2 points			
1. B 2. B 3. C 4. C ——→	0,5pts × 4		
Exercice 5 5 points			
Partie A: g dérivable sur]1;+ ∞ [et définie par $g(x) = 4x\sqrt{x-1}-1$			
1. Démontrons que g est strictement croissante sur]l;+∞[.————————————————————————————————————	0,5pts		
g est dérivable sur]1; + ∞ [et, pour tout $x \in]1; +\infty[$, $g'(x) = 4\left(\sqrt{x-1} + \frac{x}{\sqrt{x-1}}\right) > 0$.			
Conclusion: g est strictement croissante sur]1;+∞[.			
2. Démontre que l'équation $g(x) = 0$ admet une unique solution dans $[1,05;1,06]$.	0,5pts		
2. Demonstre que l'equation $g(x) = 0$ aumei une unique solution auxis $[1,05,1,00]$. $g(1,05) = -0.06$ et $g(1,06) = 0.04$. La fonction g est continue et strictement croissante			
sur $[1;+\infty]$, en particulier sur $[1,05;1,06]$. De plus, $g(1,05)\times g(1,06)<0$.			
Conclusion: l'équation $g(x) = 0$ admet une unique solution dans $]1,05;1,06[$.			
3. Justifions que: $\forall x \in]1; \alpha[, g(x) < 0 \text{ et } \forall x \in]\alpha; +\infty[, g(x) > 0.$	0,5pts		
g est continue et strictement croissante sur]1;+ ∞ [, et $g(\alpha)=0$, donc : Pour tout $x \in]1; \alpha$ [, on a $x < \alpha$, donc $g(x) < g(\alpha)$; c'est-à-dire $g(x) < 0$.			
Pour tout $x \in]\alpha; +\infty[$, on a $x > \alpha$, donc $g(x) > g(\alpha)$; c'est-à-dire $g(x) > 0$.			
Conclusion: $\forall x \in]1; \alpha[, g(x) < 0 \text{ et } \forall x \in]\alpha; +\infty[, g(x) > 0.$			
Partie B: Etude de la fonction f défini sur [1;+ ∞ [par $f(x) = x^2 - \sqrt{x-1}$.			
1. Calculons la limite de f en $+\infty$ et celle $\frac{f(x)}{x}$ en $+\infty$.	0,25pts × 2		
Pour tout $x \ge 1$:			
$f(x) = x^{2} \left(1 - \frac{\sqrt{1 - x}}{x^{2}} \right) = x^{2} \left(1 - \sqrt{\frac{x - 1}{x^{4}}} \right) = x^{2} \left(1 - \sqrt{\frac{1}{x^{3}} - \frac{1}{x^{4}}} \right), \text{ donc} : \left[\lim_{x \to +\infty} f(x) = +\infty \right]$			
$\frac{f(x)}{x} = \frac{x^2 - \sqrt{x-1}}{x} = x - \frac{\sqrt{x-1}}{x} = x - \sqrt{\frac{x-1}{x^2}} = x - \sqrt{\frac{1}{x} - \frac{1}{x^2}}, \text{ donc } \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$			
Inter-Graph (%) admet une branche parabolique de direction celle de (OJ) en +00	0,25pts		
2. Etude de la dérivabilité de f en 1 ——————————————————————————————————	0,5pts		
Pour tout $x \ge 1$, $\frac{f(x) - f(1)}{x - 1} = 4x \times \frac{1}{\sqrt{x - 1}} + \frac{1}{x - 1}$, donc $\lim_{\substack{x \to 1 \\ y}} \frac{f(x) - f(1)}{x - 1} = +\infty$			
Conclusion: f n'est dérivable en 1			
Inter-Graph (%) admet une tangente verticale au point d'abscisse 1	0,25pts		
·			

- 3. On admet que f est dérivable sur $]1;+\infty[$.
 - a) Justifions que pour tout x élément de $]1;+\infty[$, $f'(x)=\frac{g(x)}{2\sqrt{x-1}}$.

Pour tout x > 1, $f'(x) = 2x - \frac{1}{2\sqrt{x-1}} = \frac{4x\sqrt{x-1}-1}{2\sqrt{x-1}}$, donc $f'(x) = \frac{g(x)}{2\sqrt{x-1}}$

b) Etudions les variations de f

Pour tout x > 1, on a $2\sqrt{x-1} > 0$, donc f'(x) est du signe de g(x).

Ainsi: $\forall x \in]1; \alpha[, f'(x) < 0 \text{ et } \forall x \in]\alpha; +\infty[, f'(x) > 0.$

<u>Conclusion</u>: f est strictement décroissante sur $]1;\alpha[$ et strictement croissante sur $]\alpha;+\infty[$

Tableau de variation de f.-

x	1		α	+∞
f'(x)		_	þ	+
f(x)	$\exists 1$	\	$f(\alpha)$	$ egthinspace{-1mm} egthinspa$

4. Démontrons que $f(\alpha) = \frac{4\alpha^3 - 1}{4\alpha}$.

On a: $f(x) = x^2 - \sqrt{x-1}$, donc naturellement $f(\alpha) = \alpha^2 - \sqrt{\alpha-1}$.

Or
$$g(\alpha) = 4\alpha\sqrt{\alpha - 1} - 1 = 0$$
, d'où: $\sqrt{\alpha - 1} = \frac{1}{4\alpha}$. Ainsi: $f(\alpha) = \alpha^2 - \frac{1}{4\alpha} = \frac{4\alpha^3 - 1}{4\alpha}$

- - b) Calculons h(2). \rightarrow $h(2) = f(2) = 2^2 \sqrt{2-1} = 4-1=3$; h(2) = 3
 - c) Justifions que h^{-1} est dérivable en 3 puis calcule $\binom{h^{-1}}{3}$.

 h est dérivable en h(2) et $h'(2) = \frac{g(2)}{2} = 7 \neq 0$, donc h^{-1} est dérivable en h(2),

 donc en 3. Et on a : $\binom{h^{-1}}{3} = \frac{1}{h' \binom{h^{-1}}{3}} = \frac{1}{h'(2)} = \frac{1}{7}$; $\binom{h^{-1}}{3} = \frac{1}{7}$

Exercice 4 4 points

Dans l'association:

- 1/4 des femmes adhèrent à la section handball, donc $p_F(B) = 1/4$
- 1/3 des hommes adhèrent à la section handball, donc $p_{\overline{F}}(B) = 1/3$
- 30% des membres adhèrent à la section handball, soit p(B) = 3/10

0,25pts

0,5pts

0,25pts

0,25pts

0,25pts

0,25pts

0,5pts

Partie A

1. a) Démontrons que $p(F) = \frac{2}{5}$.

0,5pts

On a: $p(B) = p(F \cap B) + p(\overline{F} \cap B)$

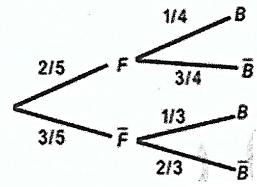
$$p(B) = p(F) \times p_F(B) + p(\overline{F}) \times p_{\overline{F}}(B)$$
.

Soit
$$p(F) = x$$
, on a : $p(\overline{F}) = 1 - x$; D'où l'égalité : $\frac{1}{4}x + \frac{1}{3}(1 - x) = \frac{3}{10}$,

soit
$$x = \frac{12}{30} = \frac{6 \times 2}{6 \times 5}$$
; ainsi $x = p(F) = \frac{2}{5}$

b) Déduisons-en l'arbre de probabilité traduisant cette situation.

0,5pts



2. Il s'agit de calculer $p_B(F)$

On a:
$$p_B(F) = \frac{p(F \cap B)}{p(B)}$$

Soit:
$$p_B(F) = \frac{\frac{2}{5} \times \frac{1}{4}}{\frac{3}{10}} = \frac{2}{5} \times \frac{1}{4} \times \frac{10}{3} = \frac{1}{3}$$
 donc $p_B(F) = \frac{1}{3}$

0,5pts

0.5pts

Partie B

1. Justifie que la probabilité de l'évènement G est $\frac{2}{33}$.

Soit Ω , l'univers associé; $Card(\Omega) = C_{100}^2 = 4950$.

$$Card(G) = C_{25}^2 = 3000$$
, donc : $p(G) = \frac{card(G)}{card(\Omega)} = \frac{300}{4950} = \frac{2}{33}$

0,5pts

- 2. Déterminons la loi de probabilité de X.
 - Les valeurs prises par X sont : -500 ; 1500 et 3500 ----

0,25 pts

0.5pts

$$O_{100} p(X = -500) = \frac{C_{75}^2}{C_{100}^2} = \frac{2775}{4950} = \frac{37}{66} ; p(X = -500) = \frac{37}{66}$$

$$o \quad p(X=1500) = \frac{C_{25}^1 \times C_{75}^1}{C_{100}^2} = \frac{1875}{4950} = \frac{25}{66} ; \boxed{p(X=1500) = \frac{25}{66}}$$

$$p(X=3500) = \frac{C_{25}^2}{C_{100}^2} = \frac{300}{4950} = \frac{2}{33} = \frac{4}{66} ; p(X=3500) = \frac{2}{33}$$

La loi de probabilité de X:

$X = x_i$	-500	1500	3500	18
$p(X=x_i)$	37/66	25/66	2/33	

3. Justifions qu'en moyenne, chaque joueur gagne 500 francs.

Il s'agit de montrer que
$$E(X) = 500$$
.

$$E(X) = \sum_{i} x_{i} p(X = x_{i})$$

$$E(X) = -500 \times \frac{37}{66} + 1500 \times \frac{25}{66} + 3500 \times \frac{4}{66}$$
;

$$E(X) = \frac{-500 \times 37 + 1500 \times 25 + 3500 \times 4}{66} = \frac{33000}{66}$$

$$E(X) = 500$$

1. Déterminons Df. Df=R127=J-0;2[U]2;+0[2- justifions que (C) admet deux asymptotes *lim far =-2, donc (C) admet une asymptote horizon tale d'equation y=-2 en-0 * lim for = lim for = - 0, done (c) admet une asymptote verticale d'équation N=2. 3-Démontrons que (C) admet une branche janobolique dont on frécisera 0,5ptsx4 ona limfon = +00 et lim fon = 0 donc (C) del admet une branche parabolique de direction (OI) en + 00. 4- Determinons les images des intervalles suivants f(J-0;1])=]-2;-1]; f([1;2[)=]-0;-1] $f(J2;+\infty E)=J-\infty;+\infty E=IR.$

Demontronique l'équation f(n)=0 admet une solution unique à dans is.

5-

fest continue et strictement croussante son J2:, +& [pt f(J2; +& [) = IR or O EIR done l'équation for = 0 admet une solution x dans J2:, +& [

6-Demontrons que trejas, 2[u]2;x[, f(n) <0 et treja; +ac, f(n) > 0 ona trejas; 2[u]2;x[, n<d e) f(n) < f(x) or f(x)=0 donc f(n) < 0 treja; +ac, n>d e) f(n)>f(x) or f(x)=0 donc f(n)>0

EXERCICE 6 5 pts

Solution

- ✓ Pour répondre à la préoccupation de Dago, je vais utiliser les probabilités.
- √ J'utilise les probabilités conditionnelles et la formule des probabilités totales

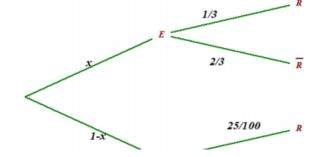
Modélisation du problème :

- E l'événement « l'élève choisi est en classe de terminale D » ;
- R l'événement « l'élève choisi aime jouer au damier » ;
- P(E) la probabilité de l'événement E.

*Je traduis cette situation par un arbre de probabilités ;

*Je détermine p(E).

Pour ce faire, posons x = P(E)



On a les probabilités suivantes :

$$P(\bar{E})=1-x$$
; $P_E(R)=\frac{1}{3}$; $P_E(\bar{R})=\frac{2}{3}$; $P_{\bar{E}}(R)=\frac{25}{100}$ et $P_{\bar{E}}(\bar{R})=\frac{75}{100}$.

En utilisant la formule des probabilités totales, on a :

$$P(R) = P(R \cap E) + P(R \cap \overline{E})$$
; comme $(R) = \frac{3}{10}$,

alors
$$\frac{3}{10} = \frac{1}{3}x + \frac{25}{100}(1-x)$$
 d'où $x = \frac{3}{5}$.

Donc finalement $p(E) = \frac{3}{5}$

Je réponds à la préoccupation de Dago

la proportion des élèves de la de terminale D est 60 %.