DS N° 3 MATHEMATIQUES TERM INALE D 2008-2009

Exercice: 6 points

On considère les nombres complexes : $z_1 = -3 + i\sqrt{3}$ $z_2 = 1 - i$ $z_3 = \frac{2}{z_2}$.

Le plan complexe est muni d'un repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 2 cm.

- 1. Mettre le nombres z_3 sous forme algébrique .
- 2. Calculer le module et un argument de z_1 , z_2 et z_3 , puis en déduire leur forme trigonométrique.
- 3. Placer les points A, B et C d'affixes respectives z_1 , z_2 et z_3 . Formes ou transformes ou transfor
- 4. Démontrer que le triangle BOC est rectangle en O.

Docs à portée de main

5. Déterminer l'affixe z_4 du point D pour que le quadrilatère OADC soit un parallélogramme. on mettra le nombre complexe z_4 sous la forme algébrique.

Exercice 2: 3 points

- 1. Résoudre dans l'ensemble des nombres réels l'équation : $x^2 4x 5 = 0$
- 2. En déduire la résolution, dans l'ensemble des nombres réels, des équations suivantes :

$$(\ln x)^2 - 4 \ln x - 5 = 0$$
 ; $\ln(x-3) + \ln(x-1) = 3 \ln 2$

PROBLÈME : (11 points)

Dans tout le problème, le plan P est rapporté à un repère orthogonal (O; i; j) d'unité graphique 2 cm.

Soit f la fonction définie sur]0;+
$$\infty$$
[par $f(x) = \frac{x + 2 + \ln x}{x}$

Partie A

- 1. Il semble que l'axe des ordonnées soit asymptote à la courbe C. Le prouver par le calcul.
- 2. a) Vérifier que pour tout x de $]0;+\infty[$, $f(x) = 1 + \frac{2}{x} + \frac{\ln x}{x}$
 - b) Déterminer la limite de f en $+\infty$.
 - c) En déduire l'existence d'une asymptote D à la courbe C. Donner son équation et la tracer sur la page
- 3. a) Prouver que, pour tout x de]0;+ ∞ [$f'(x) = \frac{-1 \ln x}{x^2}$.
 - b) Montrer que f'(x) s'annule en changeant de signe en $\frac{1}{e}$.
 - c) Etablir le tableau de variation de f. Dans ce tableau, on donnera la valeur exacte du maximum de f.
 - d) Tracer La courbe représentative C de la fonction f dans le repère (O; i; j)

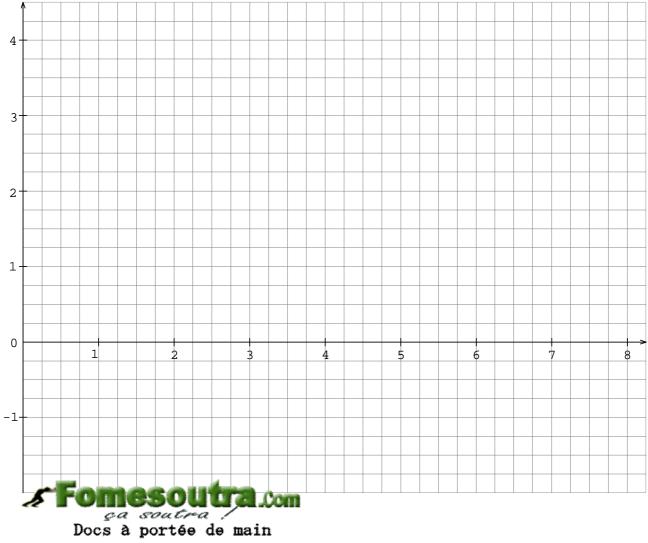
Partie B

- 1. Soit g la fonction définie sur $]0;+\infty[$ par $g(x)=\frac{x+2}{x}$ et H . la courbe représentative de g .
 - a) Etudier rapidement la fonction g sur $]0;+\infty[$ (dérivée, limites, tableau de variation).
 - b) Donner les équations des deux asymptotes de la courbe ${\cal H}$.
- 2. a) Calculer f(x) g(x) et étudier son signe.
 - b) Montrer que les deux courbes C et H se coupent en un point K d'abscisse 1.
 - c) Etudier la position relative des deux courbes C et H.

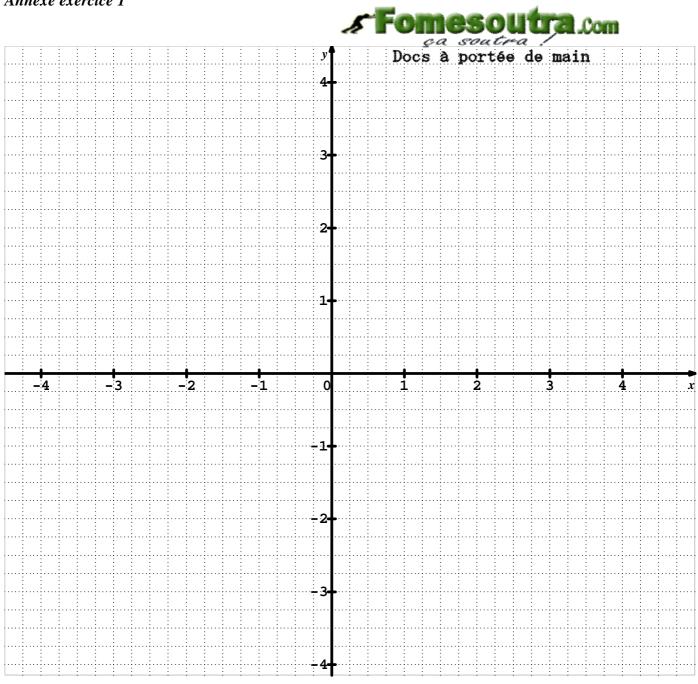
 Placer le point K et construire la courbe H dans le repère précédent.

Annexe problème

X	0,1	0,2	0,5	1	2	2,5	3	4	5	7	8
g(x)											
f(x)											



Annexe exercice 1



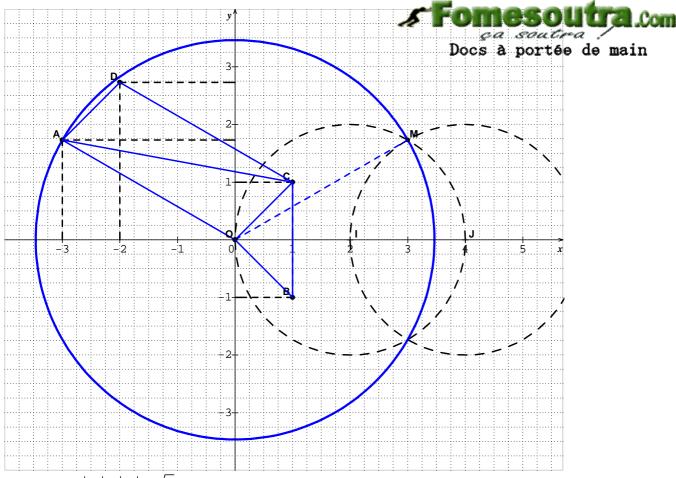
Correction

Exercice 1

$$\begin{aligned} z_3 &= \frac{2}{z_2} = \frac{2}{1-i} = 1+i \\ |z_1| &= \sqrt{(-3)^2 + \sqrt{3}^2} = \sqrt{9+3} = \sqrt{12} = 2\sqrt{3} \\ |z_2| &= \sqrt{1+1} = \sqrt{2} \\ |z_3| &= \left| \frac{2}{z_2} \right| = \frac{2}{|z_2|} = \frac{2}{\sqrt{2}} = \sqrt{2} \end{aligned} \qquad . \quad \theta_1 = \arg z_1 : \begin{cases} \cos \theta_1 = \frac{-3}{2\sqrt{3}} = \frac{-\sqrt{3}}{2} \\ \sin \theta_1 = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2} \end{cases} \text{ donc } \theta_1 = \frac{2\pi}{3} + 2k\pi \; ; k \in \square$$

$$\theta_{2} = \arg z_{2} : \begin{cases} \cos \theta_{2} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ \sin \theta_{1} = \frac{-1}{\sqrt{2}} = \frac{-\sqrt{2}}{2} \end{cases}, \text{ donc } \theta_{2} = -\frac{\pi}{4} + 2k\pi ; k \in \square \text{ , comme } z_{3} = \overline{z_{2}} \text{ ,}$$

on a : arg $z_2 = -\arg z_1 + 2k\pi$, donc $\theta_3 = \frac{\pi}{4} + 2k\pi$; $k \in \square$



On sait que $|z_2| = |z_3| = \sqrt{2}$, on déduit que le triangle BOC est isocèle en O.

$$z_{\overline{BC}} = z_C - z_B = 1 + i - (1 - i) = 1 + i - 1 + i = 2i$$
, donc $BC = |z_{\overline{BC}}| = 2$

 $BC^2 = 4$ et $OB^2 + OC^2 = \sqrt{2}^2 + \sqrt{2}^2 = 2 + 2 = 4$, on déduit que $BC^2 = OB^2 + OC^2$ et par conséquent Le triangle BOC est rectangle isocèle en O.

OADC est un parallélogramme signifie que $z_{\overline{AD}}=z_{\overline{OC}}$, donc $z_D-z_A=z_C$ ou encore

$$z_D = z_C + z_A = 1 + i - 3 + i\sqrt{3} = -2 + (1 + \sqrt{3})i$$

 $\frac{1}{x^2-4x-5} = 0$ $\Lambda = b^2 - 4ac = 16 - 4 \times (-5) = 16 + 20 = 36 > 0$, donc 2 racines distinctes

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{4 - 6}{2} = -1$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{4 + 6}{2} = 5$. $S_0 = \{-1; 5\}$

2. $(\ln x)^2 - 4 \ln x - 5 = 0$, $\ln x$ est définie sur l'intervalle $]0; +\infty[$, on pose $X = \ln x$ et on obtient

$$X^2 - 4X - 5 = 0$$
 et on a $X_1 = \ln x_1 = -1$ ou $X_2 = \ln x_2 = 5$

Donc
$$\ln x_1 = -1 = \ln \frac{1}{e} \Leftrightarrow x_1 = \frac{1}{e}$$
 $\ln x_2 = 5 \ln e = \ln e^5 \Leftrightarrow x_2 = e^5$, $S = \left\{ e^5; \frac{1}{e} \right\}$

b. $\ln(x-3) + \ln(x-1) = 3\ln 2$. Cette équation est définie pour tout réel x tels que : x-3>0 et x-1>0x > 3 et x > 1, donc elle est définie sur $[3; +\infty]$

$$\ln(x-3) + \ln(x-1) = 3\ln 2 \Leftrightarrow \ln(x-3)(x-1) = \ln 2^3 = \ln 8 \Leftrightarrow (x-3)(x-1) = 8$$

 $\Leftrightarrow x^2 - 4x + 3 - 8 = 0 \Leftrightarrow x^2 - 4x - 5 = 0$, donc $x_1 = -1$ ou $x_2 = 5$, donc une seule solution est acceptable

PARTIE A: Etude de fonction f

1) $\lim_{x \to 0^+} (x + 2 + \ln x) = -\infty$ et $\lim_{x \to 0^+} \frac{1}{x} = +\infty$. Il vient $\lim_{x \to 0^+} (x + 2 + \ln x) \frac{1}{x} = \lim_{x \to 0^+} (x + 2 + \ln x) \times \lim_{x \to 0^+} \frac{1}{x}$

donc $\lim_{x\to 0^+} f(x) = -\infty$. Comme $\lim_{x\to 0^+} f(x) = -\infty$ alors l'axe des ordonnées est asymptote à la courbe C.

2)a) Pour tout x de]0;+
$$\infty$$
[$f(x) = \frac{x}{x} + \frac{2}{x} + \frac{\ln x}{x}$ soit $f(x) = 1 + \frac{2}{x} + \frac{\ln x}{x}$

- b) Comme $\lim_{x \to +\infty} \frac{2}{x} = 0$ et $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$, alors $\lim_{x \to +\infty} f(x) = 1$
- c) On en déduit que la courbe C admet la droite d'équation x = 1 comme asymptote au voisinage de $+\infty$.voir courbe.

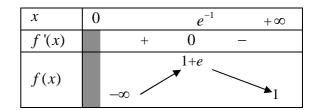
3)a) Pour tout x de]0; +
$$\infty$$
[; $f'(x) = \frac{(1+\frac{1}{x})x - (x+2+\ln x)}{x^2}$ $f'(x) = \frac{x+1-x-2-\ln x}{x^2}$. $f'(x) = \frac{-1-\ln x}{x^2}$

b)
$$f'(x) \ge 0$$
 $\frac{-1 - \ln x}{x^2} \ge 0$ $et \ x \in]0; +\infty[$ $\Leftrightarrow f'(x) \ge 0$ $-1 - \ln x \ge 0$ $\Leftrightarrow -\ln x \ge 1 \Leftrightarrow \ln x \le -1$

$$\Leftrightarrow x \le e^{-1} = \frac{1}{e}$$

$$f'(x) \le 0$$
 $\frac{-1 - \ln x}{x^2} \le 0$ $et \ x \in]0; +\infty[\iff x \ge e^{-1} = \frac{1}{e}.$

Donc f'(x) s'annule en changeant de signe en $x = \frac{1}{x}$



c) Il en résulte le tableau de variation de f :

PARTIE B:

- 1) g est la fonction définie sur]0;+ ∞ [par $g(x) = \frac{x+2}{x}$
- a) $g'(x) = \frac{x (x + 2)}{x^2}$; $g'(x) = \frac{-2}{x^2}$ Comme g'(x) < 0 sur]0; $+\infty$ [alors la fonction g est strictement décroissante sur]0;+ ∞ [. $\lim_{x\to 0^+} g(x) = +\infty$ et $\lim_{x\to +\infty} g(x) = 1$.

Il en résulte le tableau de variation suivant :

b) La courbe H admet comme asymptote l'axe des ordonnées et la droite D.

X	0	+∞
f'(x)		-
f(x)		+∞ 1

2)a)
$$f(x) - g(x) = \frac{x + 2 + \ln x - (x + 2)}{x^2} = \frac{\ln x}{x}$$
 Sur]0;+ ∞ [$f(x)$ - $g(x)$ est du signe de $\ln x$

Donc $f(x)-g(x) \le 0 \Leftrightarrow 0 < x \le 1$ et $f(x)-g(x) \ge 0 \Leftrightarrow x \ge 1$.

- b) Les deux courbes C et H . se coupent en un point A d'abscisse 1, car $f(x) g(x) = 0 \Leftrightarrow x = 1$
- c) On en déduit que : C est au-dessous de H sur]0;1] et C est au-dessus de H . sur $[1;+\infty[$

х	0,1	0,2	0,5	1	2	2,5	3	4	5	7	8
g(x)	21	11	5	3	2	1,8	1,7	1,5	1,4	1,29	1,25
f(x)	-2,03	2,95	3,61	3	2,35	2,2	2,03	1,85	1,72	1,56	1,51

