A T

inée scolaire: 2021-2022

Duréo: 2h00min

Physique

Exercice 1

A/ Réarrange les mots et groupes de mots suivants de munière à obtenir dans chaque cas une phrase qui a un sens en rapport avec les oscillations mécaniques.

1) / d'un oscillateur/ la phase/ à partir/ se déterminent/ initiales/ du mouvement/ des dates/ L'amplitude et / mécanique/ à l'origine / des conditions/

2) /la masse / lorsque/ fixé / La pulsation / du solide / d'un pendule / au ressort / car 'que/ propre / élastique / augmente/

B/ Un oscillateur mécanique libre non amorti en mouvement sur un axe (x'x) est constitué d'un ressort de raideur k et d'un solide de masse m fixé à ce ressort.

1) L'équation différentielle qui régit le mouvement de cet oscillateur de pulsation ω₀ est :

a) $\ddot{x} - \omega_0^2 x = 0$; b) $\ddot{x} + \omega_0 x = 0$; c) $\ddot{x} + \omega_0^2 x = 0$; d) $\ddot{x} - \omega_0 x = 0$

2) La période propre To de cet oscillateur mécanique est donnée par l'expression :

a)
$$T_0 = 2\pi \sqrt{\frac{k}{m}}$$
 (b) $T_0 = 2\pi \sqrt{\frac{m}{k}}$ (c) $T_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ (d) $T_0 = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$

Exercice 2

Dans tout l'exercice on prendra $g = 10 \text{ m.s}^{-2}$. On négligera les frottements. On utilise un ressort de masse négligeable, à spires non jointives.

Partie 1

Pour déterminer la raideur k du ressort, on accroche une de ses extrémités à un support fixe. Lorsqu'on accroche une masse marquée m = 200g à son autre extrémité, son allongement vaut 10 cm.

1. Etablis une relation entre la tension T du ressort et le poids P de la masse m.

2. Vérifie que la raideur du ressort vaut 20 N.m⁻¹.

Partle 2

On fixe maintenant le ressort étudié comme l'indique la figure. Le ressort est horizontal; A est son extrémité fixe. On accroche à son autre extrémité un solide S de masse m = 200g. Ce solide peut se déplacer sans frottement le long d'un axe horizontal Ox. A l'équilibre, le centre d'inertie G du solide coïncide avec l'origine O du repère.

(voir figure ci-dessous)

1.1 Le solide est supposé en mouvement et dans la position représentée sur la figure ci-dessus. Fais l'inventaire des forces exercées sur le solide sur le schéma à ce moment-là.

1.2 Etablis l'équation différentielle qui régit le mouvement de G.

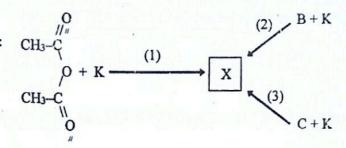
1.3 En déduis l'expression de la pulsation propre ω_0 de cet oscillateur et celle de sa période propre T_0 . Calcule numériquement ω_0 et T_0 . (donnée : $2.\pi = 6.3$).

1.4 Vérifie que quelles que soient les valeurs de X_m et de φ l'équation horaire $x = X_m \cos{(\omega_0 t + \varphi)}$ est solution de l'équation différentielle précédente.

2. On comprime maintenant le ressort en poussant le solide vers la gauche. Le point G occupe alors la position G_0 telle que $x_0 = -15$ cm. A l'instant t = 0, on lâche le solide sans vitesse initiale.

2.1 Détermine l'amplitude maximale X_m (par convention X_m est positive) et la phase φ du mouvement, ainsi que la vitesse v(t) du solide.

2.2 En déduis la valeur maximale de la vitesse.


Chimie

Exercice 1

Complète le texte ci-dessous avec les mots et groupe de mots suivants : Solubles ; ions carboxylates ; savon ; réglycérides; carboxylate de sodium; dissolvent; détergentes; l'hydroxyde de sodium; micelles.

Une réaction de saponification est une réaction entre un ester et une base forte.	
On obtient ainsi un si la base forte est	
Le carboxylate de sodium est le	
Industriellement, on utilise des	es
d'ions carboxylates. L'orientation des	ans
l'eau et permet leur élimination lors du rincage.	

Exercice 2 Soit l'organigramme ci-contre :

Le compose X est un ester de formule brute CnH2nO2 et de masse molaire moléculaire 116 g/mol

- 1. Donne la formule brute de X.
- 2. Trois procédés numérotés (1), (2) et (3) permettent d'obtenir cet ester X (voir l'organigramme ci-dessus).
- 2.1. Donne la famille du composé K.
- Donne les formules semi-développées possibles et les noms de K.
- 2.3. Le composé K s'oxyde pour donner un autre composé M qui donne un test positif avec la 2,4-DNPH et un test négatif avec le réactif Schiff.
 - 2.3.1. Donne la formule semi-développée de M.
 - 2.3.2. En déduis ceux de K.
- 2.4. Ecris alors l'équation bilan de chaque réaction chimique donnant le composé X et nommer X sachant quo : → Amide (N) + NH₄++ Cl⁻et que la solution aqueuse de C donne une coloration jaune avec le bieu de bromothymol (BBT).
- 2.5. Donne la formule semi-développée et nom du composé (N).
- 3. On veut savoir lequel des deux procédés a été utilisé pour préparer le composé X. On dispose alors des informations suivantes:
 - La réaction est totale.
 - La réaction est totale.

 La composé qui est en excès par rapport
- Identifie la réaction qui a servi à préparer le composé X. Justifier votre réponse.
- Détermine la masse du composé X formé.

the donne les masses molaires atomiques en g/mol: C=12; H=1; O=16; CI=35,5; N=14.