Coefficient : 2 Durée : 2 h

PHYSIQUE-CHIMIE

Cette épreuve comporte 02 pages numérotées 1/2, 2/2 L'usage de la calculatrice scientifique est autorisé.

EXERCICE 1 (8points)

Physique (5points)

Α-

Pour chacune des propositions suivantes, recopie le numéro de la proposition et écrit **V** si la proposition est vraie ou **F** si elle est fausse.

Un objet A soumis à deux forces est en équilibre lorsque :

- 1) Les deux forces ont la mêmes droites d'action, la même valeur et de sens opposés ;
- 2) Les deux forces ont la même droite d'action, la même valeur et sont de même sens ;
- 3) Les deux forces ont la même droite d'action, des valeurs différentes et de sens opposés
- B- Recopie le texte ci-dessous en le complétant par les expressions qui conviennent :

énergie cinétique, énergie cinétique et potentielle de pesanteur, énergie potentielle de pesanteur.

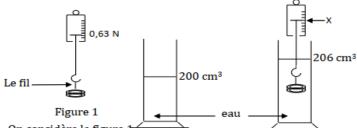
Un véhicule est immobilisé au sommet d'une pente.
A cet endroit de la pente, il possède une
Mis en mouvement, le véhicule descend la pente.
Mis en mouvement, le verneure descend la pente.
Il possède à mi-parcours, une
Lorsqu'il se trouve au bas de la pente où la voie est horizontale,
il possède une

C-

Recopie et relie chaque type de lentille à ses propriétés caractéristiques.

Lentilles convergentes	•
Lentilles divergentes	•

- Bords épais
- Centre épais
- Vergence positive
- Bords minces
- Vergences négatives


Chimie (3points)

Recopie et équilibre les réactions chimiques ci-dessous.

1-
$$CH_4 + O_2$$
 \longrightarrow $CO_2 + H_2O$
2- $H_2 + O_2$ \longrightarrow H_2O
3- $Cu + O_2$ \longrightarrow CuO

EXERCICE 3 (7points)

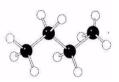
Daniel reçoit une bague de son père. Avec l'aide de ses camarades de classe, il décide de déterminer la nature de ce métal. Ils réalisent au Labo l'expérience ci-dessous.

- 1- On considère la figure 1
 - Donne le nom de l'instrument utilisé et sa Figure 2
 - 1.2- Indique les forces qui s'exercent sur la bague.
 - 1.3- Donne la valeur de l'intensité de chacune de ces forces.
- 2- On considère la figure 2
 - 2.1- Donne le nom de la troisième force qui s'exerce sur la bague
 - 2.2- Donne le volume de la bague.
- 3- Calcule:

1.1-

- 3.1- la masse de la bague
- 3.2- la masse volumique et en déduire la nature de la bague

4.


- 4.1- Calcule la valeur de l'intensité de la troisième force
- 4.2- En déduis la valeur X.

matière	cuivre	argent	aluminium	fer
masse volumique (g/cm³)	8,9	10,5	2,7	8,7

EXERCICE 3 (5points)

† F

La maman d'une élève du Lycée Moderne Jeunes filles de Yopougon utilise une cuisinière à gaz butane. Le modèle moléculaire de l'un des constituants de ce gaz est représenté ci-dessous.

- Les boules noires représentent les atomes de carbone
- Les boules blanches représentent les atomes d'hydrogène

L'élève fait remarquer à sa maman que la combustion du butane produit le dioxyde de carbone qui est néfaste à l'environnement. Soucieuse de la protection de l'environnement, elle se propose de sensibiliser sa maman

- 1- Ecris la formule semi-développée de ce butane dont le modèle moléculaire est représenté ci-dessus et donne son nom.
- 2- Ecris l'équation-bilan de la combustion complète de ce butane dans le dioxygène.
- 3- Calcule le volume de dioxyde de carbone obtenu sachant que le volume de butane brûlé est $V=1200\ {\rm cm}^3$.
- 4- La production en quantité du dioxyde de carbone est à l'origine d'un phénomène naturel
 - 4-1 Donne le nom de ce phénomène.
 - 4-2 Cite une conséquence de ce phénomène sur l'environnement.