

(2014)

	Nationality			No.					
CHEMISTRY	Name	(Ple fan	ease print full name)	name, un	derlining	Marks			
I Write the refe	erence number o	of the	e correct answe	er in the	appropriate	box on	the Ans	swer Shee	t
(1) Which of	the elements 1)	to 4)	has no allotrop	es?					
1) C		2)	N	3)	0		4)	P	
(2) When diss	solved in water a	at th	e concentration	of 1 mol	L^{-1} , which	of the	substanc	es 1) to 4)
1) HCl		2)	HF 3) CH₃C	ООН	4)	H ₂ S		
(3) Which of	the substances 1) to (4) contains only	single b	onds?				
ŕ	on dioxide			2)		ric acid			
3) hydr	ogen peroxide			4)	nitrogen				
(4) Which of	f the substances	1) to	4) has the high	est meltii	ng point?				
1) Ag		2)	AI	3)	Fe		4)	Sn	
(5) Which of	the descriptions	1) to	4) is not correc	ct for the	properties o	of crystal	lline silid	con?	
1) A sil	icon atom is sur	roun	ded by its four	nearest-ne	eighbor silic	on atom	ns.		

2) High purity crystals are applied to solar cells.

4) Crystalline silicon is transparent to visible light.

3)

Electrical conductivity can be tuned by doping boron or phosphorus.

es?				non inc	ey react to evolve		
calcium hydr	oxide and ammo	onium chloride					
manganese d	ioxide and hydro	ochloric acid					
sodium chlor	ride and sulfuric	acid					
3) sodium chloride and sulfuric acid4) zinc and hydrochloric acid							
hich of the prop	perties 1) to 4) is	not appropriate	for ideal gas?				
The volume of	of an individual	atom or molecu	le is zero.				
There is no in	nteraction among	g the atoms and	molecules.				
It transforms	into liquid or so	lid at low tempe	eratures.				
It obeys Boyl	le's law.						
	(2)	(3)		(4)			
	(6)	(7)					
 II Give the appropriate values for (a) and (b) in the sentences below to two significant figures. Use the following values for atomic weights: H=1.0, O=16.0, Na=23.0, S=32.0. 100 mL of 1.0 mol L⁻¹ NaOH aq contains (a) g of NaOH. After mixing 100 mL of 1.0 mol L⁻¹ H₂SO₄ aq with the first solution, the concentration of proton becomes (b) mol L⁻¹. (a) (b) mol L⁻¹ 							
	calcium hydromanganese do sodium chlorozinc and hydrich of the proportion of the proportion of the volume of the solid stransforms. It obeys Boyd the appropriate of the solid stransforms. It obeys Boyd the appropriate of the appropriate of the solid stransforms.	calcium hydroxide and ammed manganese dioxide and hydrosodium chloride and sulfuric zinc and hydrochloric acid hich of the properties 1) to 4) is The volume of an individual There is no interaction among It transforms into liquid or so It obeys Boyle's law. (2) (6) the appropriate values for (as. Use the following values for as. Use the following values for as. Use the first solution, the SO ₄ aq with the first solution, the	calcium hydroxide and ammonium chloride manganese dioxide and hydrochloric acid sodium chloride and sulfuric acid zinc and hydrochloric acid The volume of an individual atom or molecumenter is no interaction among the atoms and it transforms into liquid or solid at low temporal it obeys Boyle's law. (2) (3) (6) (7) The appropriate values for (a) and (b) is. Use the following values for atomic weights: L of 1.0 mol L ⁻¹ NaOH aq contains (a) g SO ₄ aq with the first solution, the concentration	calcium hydroxide and ammonium chloride manganese dioxide and hydrochloric acid sodium chloride and sulfuric acid zinc and hydrochloric acid hich of the properties 1) to 4) is not appropriate for ideal gas? The volume of an individual atom or molecule is zero. There is no interaction among the atoms and molecules. It transforms into liquid or solid at low temperatures. It obeys Boyle's law. (2) (3) (6) (7) the appropriate values for (a) and (b) in the sentences s. Use the following values for atomic weights: H=1.0, O=16.0, N L of 1.0 mol L ⁻¹ NaOH aq contains (a) g of NaOH. After m SO ₄ aq with the first solution, the concentration of proton become	calcium hydroxide and ammonium chloride manganese dioxide and hydrochloric acid sodium chloride and sulfuric acid zinc and hydrochloric acid hich of the properties 1) to 4) is not appropriate for ideal gas? The volume of an individual atom or molecule is zero. There is no interaction among the atoms and molecules. It transforms into liquid or solid at low temperatures. It obeys Boyle's law. (2) (3) (4) (6) (7) the appropriate values for (a) and (b) in the sentences below is. Use the following values for atomic weights: H=1.0, O=16.0, Na=23.0 L of 1.0 mol L ⁻¹ NaOH aq contains (a) g of NaOH. After mixing 16 SO ₄ aq with the first solution, the concentration of proton becomes (b		

III Give the appropriate name of the compounds or ions for (a) to (d) below using chemical formulas. The e⁻ denotes an electron.

The overall reaction in a fuel cell that uses KOH as electrolyte is written as follows;

$$2 H_2 + O_2 \rightarrow 2 H_2O.$$

At the anode, (a) is oxidized by the reaction;

$$(a)+2(b) \rightarrow 2(c)+2e^{-}$$

At the cathode, (d) is reduced by the reaction;

$$(d)+2(c)+4e^- \rightarrow 4(b).$$

(a)	(b)	
(c)	(d)	

IV Think of a cubic unit cell of crystal that is composed of a single kind of atom. By placing atoms at every corner of the cube, a simple cubic lattice is formed. Assume that the atoms are perfect hard spheres with a radius r and that the atoms are in close contact to minimize the volume of the cube. Write the correct answers for (a) to (d) below to two significant figures.

- (1) In the simple cubic lattice, the volume occupied by the atoms is (a) % that of the cube, and the length of the edge of the cube is (b) r.
- (2) To the simple cubic lattice described above, atoms are added to all the face-center positions of the cube. In the resulting lattice, the volume occupied by the atoms is (c)% of the cube, and the length of the edge of the cube is (d)r.

(a)	%	(b)	r
(c)	%	(d)	r

V Outlined here are synthetic processes of organic compounds. Select the structural formulas for the compounds A to J from (1)-(24).

(1) CH₃CH₂CI

(5)
$$+CH_2-CH_2+$$

(6) CH₃CHO

(9)
$$\sim$$
 CH=CH₂ (10) H_2 C=CHCOCH₃

(11)
$$H_2C=CH-C\equiv CH$$
 (12) $H_2C=CH_2$ (13) $H_2C=CHCN$ (14) CH_3OH

(21) CH₃CH₂OH

(22) CH ₃ CH ₂ C
--

A	В	C	D	E
		,		
 · · · · · · · · · · · · · · · · ·				
F	G	H	I	J

VI Elementary analysis of the organic compound X, which is a liquid at room temperature and consists of carbon, hydrogen, and oxygen, shows C: 68.18%, H: 13.64 %, O: 18.18%. The molecular weight of X is 60. Answer questions (1)-(4). Use the following values for atomic weights: C: 12.0. H: 1.00, O: 16.0.

- (a) C_2H_6O (b) $C_4H_{10}O$ (c) $C_5H_{12}O$ (d) $C_6H_{14}O$ (f) C_3H_8O (g) C_3H_7C1
- (2) The reaction of X with metallic sodium generates a gas. Which of the following gases are generated?
- (a) oxygen (b) nitrogen (c) hydrogen chloride (d) chlorine (e) carbon dioxide (f) hydrogen

(d) amine

- (3) Which of the following functional groups does X have?
- (a) carboxylic acid (b) ester (c) alcohol

(e) aldehyde

(4) How many structural isomers of X have a chiral carbon center?

(1)	(2)	(3)	(4)

VIIAnswer the following questions about the amino acids $\bigcirc -\bigcirc$.

(6)

- (1) Alanine
- 2 Glycine
- 3 Glutamic acid

- 4 Tyrosine
- (5) Methionine
- Lysine
- (1) Which of the descriptions (a) to (e) is not correct for the common properties of these amino acids?
- (a) All are α-amino acids.
- (b) Optical isomers (enantiomers) exist.
- (c) All are water soluble.
- All consist of one amino group and one carboxylate group.
- All become purple when heated with ninhydrin test solution followed by cooling.
- (2) Which has the smallest molecular weight?

- (3) Which contains sulfur atoms?
- (4) Which sodium salt is used as a synthetic seasoning?
- (5) Which becomes yellow when heated with concentrated nitric acid?

(1)	(2)	(3)	(4)	(5)