2020 年度日本政府(文部科学省) 奨学金留学生選考試験 ## QUALIFYING EXAMINATION FOR APPLICANTS FOR THE JAPANESE GOVERNMENT (MEXT) SCHOLARSHIP 2020 学科試験 問題 **EXAMINATION QUESTIONS** (学部留学生) UNDERGRADUATE STUDENTS 化学 **CHEMISTRY** 注意 ☆試験時間は60分。 PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES. (2020) CHEMISTRY (4) | Nationality | | No. | | | | |-------------|---|----------------|---------|-------|--| | Name | (Please print ful
underlined family na | l name
ame) | e, with | Marks | | | I | Sel | ect one co | rrect answer and | write | e the corresponding of | otion | number. | | | |---|-----|-------------------|--------------------|-------|-------------------------|-------|----------------------|----|-----------------| | | (1) | Which of | f the following io | ns ha | as the same electron co | onfig | guration as Ne atom? | | | | | | 1) K ⁺ | | 2) | Mg^{2^+} | 3) | Fe^{3+} | 4) | Cl ⁻ | | | (2) | Which o | f the following m | olec | ules has the longest bo | ond o | listance? | | | | | | 1) H ₂ | | 2) | N_2 | 3) | F ₂ | 4) | Cl ₂ | | (3) Which of the following substances is regarded as a molecular crystal at ambient temperature and pressure? | | | | | | | | | | | | | 1) silic | con | 2) | sodium chloride | 3) | calcium | 4) | iodine | 1) HF 2) HCl 3) HBr 4) HI Which of the aqueous solutions of the following compounds has the lowest acidity? - (5) Which of the following descriptions is correct for phosphorus and sulfur? - 1) Both are group 16 elements. - 2) Both have allotropes. - 3) Both oxides exist as solid at ambient temperature and pressure. - 4) Both oxides produce basic solutions when dissolved into water. | (6) | Which of the following reactions is accompanied by the generation of oxygen? | | | | | | |--------------------------|--|--|--|--|--|--| | | 1) | Blowing fluorine into water. | | | | | | | 2) | Addition of sulfuric acid to zinc. | | | | | | | 3) | Addition of water to potassium. | | | | | | | 4) | Addition of hydrochloric acid to copper(II) oxide. | | | | | | (7) | Wh | ich of the following descriptions on industrial smelting process is not correct? | | | | | | | 1) | Sodium is obtained by electrolysis of molten salt. | | | | | | 2) Aluminum is extracted | | Aluminum is extracted by reducing aluminum oxide with chromium. | | | | | | | 3) | Iron is extracted by reducing iron oxide with coke. | | | | | | | 4) | Blister copper is purified by electrolysis refining. | | | | | | v
v | values $\sqrt{2}=1$. | the appropriate values for (a) to (g) in the following statements. Calculate the to two significant figures for (f) and (g). Use the following values if necessary; 4, the atomic weight of Au is 197, and the Avogadro constant is 6.0×10^{23} mol ⁻¹ . | | | | | | e | - | on is as follows:
$4NH_3 + (a)O_2 \rightarrow (b)NO + (c)H_2O.$ | | | | | | a
c
n | tom i | A face-centered cubic structure contains (d) atoms in its unit cell. In the structure, one is surrounded by (e) nearest-neighboring atoms. Gold crystallizes in the face-centered structure under ambient conditions. The edge length of the cubic unit cell of gold is 0.41 ne atomic radius of gold atom is (f) nm, and the density of crystalline gold is (g) | | | | | | | | | | | | | - III Answer the following questions about ideal gas, where P is pressure, V is volume and T is absolute temperature. - (1) Which of graphs (a) to (f) in the figure below shows the relation between P (x-axis) and V (y-axis) for a fixed amount of gas at constant T? - (2) Which of graphs (a) to (f) in the figure below shows the relation between T(x-axis) and P(y-axis) for a fixed amount of gas at constant V? - (3) Which of graphs (a) to (f) in the figure below shows the relation between P(x-axis) and PV/T (y-axis) for a fixed amount of gas? - (4) When nitrogen and water were added into a volume-variable reactor with a smooth piston as shown in the figure below, the volume of gas was 3.0 L and the total pressure was 4.3×10^4 Pa. Temperature was kept at 27°C. The saturated vapor pressure of water is 3.0×10^3 Pa at 27°C. Dissolution of N₂ gas in water is negligible. - (4-1) Calculate the partial pressure of nitrogen to two significant figures. - (4-2) The piston was moved to decrease the volume of gas to 2.0 L at constant temperature of 27°C. Calculate the total pressure to two significant figures. - IV First, 3.0 moles of N₂ and 9.0 moles of H₂ were added into a volume-variable reactor with a smooth piston as shown in the figure below. Next, the ammonia synthesis reaction (N₂(g) + 3H₂(g) ≥ 2NH₃(g) ΔH = −92 kJ) proceeded at constant temperature and constant pressure in the presence of a solid catalyst. After the reaction reached to an equilibrium state, the mole fraction of NH₃ was 50%. The volume of the mixed gas was 3.0 L before the reaction. All gases can be regarded as ideal gases. - (1) Calculate the number of moles for N_2 , H_2 and NH_3 after the reaction to two significant figures. - (2) Calculate the amount of heat generated by the reaction. - (3) Calculate the volume of the mixed gas after the reaction to two significant figures. - (4) Calculate the equilibrium constant to two significant figures. - (5) Line X in the figure on the right shows the time course of the amount of NH_3 formation. When the reaction conditions are changed as below, which of lines A E will be obtained, if - 1) a catalyst with higher activity is added. - 2) the temperature is raised. - (6) The figure on the right shows the time course of the apparent rate of NH₃ formation under the same reaction conditions that give Line X above. Which of lines F–I is correct? V Answer the following questions about organic compounds. Use the following values if necessary; the atomic weights of C, O, and H are 12.0, 16.0, and 1.00, respectively. There is compound **A**, which is made up of carbon, hydrogen, and oxygen atoms. When 50.5 mg of compound **A** was combusted completely with dry oxygen, 110 mg of CO₂ and 40.5 mg of H₂O were obtained. A complete hydrolysis of compound **A** gave compounds **B** and **C** at a 2:1 molar ratio. Compound **B** reacted with sodium to give hydrogen gas. When compound **B** was oxidized, compound **D**, which gives a positive Tollens' test (silver mirror test), was formed. Further oxidation of compound **D** produced compound **E**. Each of compounds **B** and **E** produced a yellow precipitate by the treatment with I₂ and NaOH_{aq}. Compound **C** is the starting material for nylon 6,6. - (1) Write the appropriate values for x, y, and z in the molecular formula $C_xH_yO_z$ of compound A. The molecular weight of compound A does not exceed 300. - (2) Chose the appropriate structural formulas for compounds **B**, **C**, **D**, and **E** from options 1) to 20). - 1) CH₃CH₂CH₃ 2) CH₃CH₃ 3) CH₃CH₂OH 4) CH₃CH₂OCH₂CH₃ 5) HOCH₂CH₂OH - 6) CH₃CHO 7) CH₃COOH 8) CH₂=CHCH₂CH₃ 9) CH₃CH=CHCH₃ 10) HCHO - 11) CH_3CH_2COOH 12) $CH_3CH_2CH_2CH_2OH$ 13) $CH_3-CH-CH_2CH_3$ 14) $CH_3-C-CH_2CH_3$ CI O - 15) CH₃-CH-CH₂CH₃ 16) HO-C-CH₂CH₂CH₂CH₂CH₂CH₂-C-OH 17) HO-C-CH₂CH₂CH₂-C-OH O O O - 18) $HO-C-CH_2CH_2CH_2-C-OH$ 19) $HO-C-CH_2CH=CH-CH_2-C-OH$ 20) CO_2 - (3) Compound \mathbf{F} , which has nitrogen atom(s), is used as another starting material with compound \mathbf{C} for the synthesis of nylon 6,6. Write the appropriate values for a, b, and c in the molecular formula $\mathbf{C}_a\mathbf{H}_b\mathbf{N}_c$ of Compound \mathbf{F} . - VI Answer the following questions about polymers. Use the following values if necessary; the atomic weights of C, O, and H are 12.0, 16.0, and 1.00, respectively. - (1) Choose the appropriate structural formulas for constituent monomer units of synthetic polymers a) to c) from options 1) to 14). - a) Polystyrene - b) Polyvinyl chloride c) Polypropylene - 2) $CH_2 = CHCH_3$ - 4) CH₂=CHCl - (2) Choose the appropriate structural formulas for the two constituent monomer units of polyethylene terephthalate from options 1) to 14) that are shown in question (1). - (3) For a polyethylene terephthalate with an average molecular weight of 2.00×10^4 , calculate the average degrees of polymerization to three significant figures. - (4) How many molecules of glucose (C₆H₁₂O₆) react in a dehydration reaction to produce a molecule of amylose with a molecular weight of 2.70×10^{5} ? Calculate the value to three significant figures. - (5) Iodine test is positive for amylose, but is negative for cellulose. Chose the appropriate reason for this difference from options 1) to 4). - 1) Cellulose has a helical structure, while amylose does not. - 2) Amylose has a helical structure, while cellulose does not. - Amylose is stable, while cellulose is not. 3) - Cellulose is stable, while amylose is not.