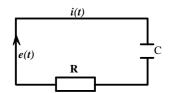


BTS BLANC BTS GO MATHEMATIQUES 2009-2010

Exercice 1; 5 points

On se propose dans cette partie d'obtenir l'intensité i du courant dans le circuit ci-dessous lorsqu'il est alimenté par le signal d'entrée $e \mapsto e(t)$. L'équation permettant de trouver l'intensité

du courant est, pour
$$t \in [0; +\infty[$$
, $Ri'(t) + \frac{1}{C}i(t) = \frac{de(t)}{dt}$ (1)



Pour déterminer la fonction i on remplace le signal d'entrée e(t)

définie par : $e(t) = \frac{1}{\pi} + \frac{1}{2}\sin t - \frac{2}{3\pi}\cos 2t$. L'équation (1) devient alors :

$$Ri'(t) + \frac{1}{C}i(t) = e'(t)$$
 (2).

On admet que l'intensité i du courant est une fonction dérivable sur $\left[0;+\infty\right[$.

On suppose dans toute la suite de l'exercice que R = 5000Ω et C = 10^{-4} F.

1°. Montrer que l'équation (2) peut alors se transformer et s'écrire :

$$\begin{cases} i'(t) + 2i(t) = 10^{-4} \cos t + \left(\frac{4}{15\pi} \times 10^{-3}\right) \sin 2t & (3) \\ t \in [0; +\infty[$$

2°. Vérifier que la fonction i_1 , telle que $i_1(t) = \left(4 \times 10^{-5}\right) \cos t + \left(2 \times 10^{-5}\right) \sin t$ est une solution particulière

de l'équation différentielle :
$$\begin{cases} i'(t) + 2i(t) = 10^{-4} \cos t \\ t \in [0; +\infty[$$

3°. Déterminer une solution particulière \emph{i}_2 de l'équation différentielle :

$$\begin{cases} i'(t) + 2i(t) = \left(\frac{4}{15\pi} \times 10^{-3}\right) \sin 2t \\ t \in [0; +\infty[$$

4°. Résoudre alors l'équation différentielle (3). En déduire la solution particulière vérifiant la condition i(0)=0 .