Sujets

Exercice 1

Soit f la fonction définie sur R par $f(x) = \cos(2x) + 2\sin(x)$.

On appelle C sa courbe représentative dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

- 1° Vérifier que l'on peut réduire l'ensemble d'étude de f à l'intervalle $[0; 2\pi]$.
- 2° Démontrer que, pour tout réel x, f'(x) est du signe de : $f'(x) = 4\cos(x)\left(\frac{1}{2} \sin(x)\right)$

Etudier les variations de f sur $[0; 2\pi]$ et dresser son tableau de variation.

Donner les valeurs exactes des extrema, et préciser en justifiant s'il s'agit de mimima ou de maxima.

- 3° Démontrer que la courbe C admet la droite d'équation $x = \frac{\pi}{2}$ pour axe de symétrie.
- 4° Déterminer une équation de la tangente T à C au point d'abscisse 0. Etudier la position de C par rapport à T sur $[0; \pi/6]$
- 5° On a tracé ci-contre, dans un repère orthonormal, la courbe C sur $[0;2\pi]$. (l'unité graphique n'est pas précisée). En utilisant les questions précédentes compléter le tracé sur $[-\pi;2\pi]$ et tracer la droite T.

Exercice 2

Partie A:

Soit g la fonction définie sur R par $g(x) = 4\sin(x) + 3$.

- 1) Montrer que l'équation $g \square x \square = 0$ a exactement 2 solutions sur l'intervalle $[0; 2\pi]$. On notera α et β ces solutions $(\alpha < \beta)$.
- 2) Donner en le justifiant, un encadrement d'amplitude 10^{-2} de chacune de ces solutions.
- 3) En déduire le signe de g(x) sur l'intervalle $[0; 2\pi]$.

Partie B:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \cos^2(x) - 3\sin(x)$ et \mathbb{C} sa courbe représentative dans un repère orthogonal $\left(O; \vec{i}, \vec{j}\right)$ (on prendra pour unité 1cm sur l'axe des ordonnés et on représentera π par 3 cm sur l'axe des abscisses).

- 1) Pourquoi f est-elle continue et dérivable sur R?
- 2) Montrer que f est périodique.
- 3) Etudier les variations de f sur l'intervalle $[0;2\pi]$ et dresser son tableau de variations sur cet intervalle.
- 4) Déterminer les abscisses des points d'intersection de C avec l'axe des abscisses sur $[0; 2\pi]$. Tracer C sur $[0; 2\pi]$, puis sur $[-\pi; 0]$.

Exercice 3

Soit f la fonction définie sur R par $f(x) = \frac{1}{2}\cos(2x) - \cos(x)$ et C sa courbe représentative dans un repère orthogonal $(O; \vec{i}, \vec{j})$.

- 1.a. Pourquoi f est-elle continue et dérivable sur R?
 - b. Montrer que f est périodique de période 2π .
 - c. Démontrer que la courbe C admet l'axe des ordonnées pour axe de symétrie.
- 2.a. Déterminer la fonction dérivée de f
 - b. Démontrer que pour tout réel x, $f'(x) = \sin x(-2\cos x + 1)$
 - c. Etudier le signe de f'(x) pour tout réel x dans l'intervalle $[0;\pi]$
- 3) Etudier les variations de f sur l'intervalle $[0;\pi]$ et dresser son tableau de variations sur cet intervalle.
- 4) Tracer la courbe représentant f sur $[-\pi;\pi]$.

Correction

Exercice 1

Ex I

1° f est périodique de période 2 π 2° f '(x) = -2 sin 2 x + 2 cos x = -4 sin x cos x + 2 cos x

$$= 4\cos x \left(-\sin x + \frac{1}{2}\right)$$

-3 minimum, $\frac{3}{2}$ maximum,

1 minimum local

X	0	$\frac{\pi}{6}$		$\frac{\pi}{2}$		$\frac{5\pi}{6}$		$\frac{3\pi}{2}$		2 π
cos x	+		+	0	1000		+	0	-	
$\frac{1}{2}$ - $\sin x$	+	0	-			0	+		+	
f'(x)	+	0	-	0	+	0	1	0	+	
f		$\frac{3}{2}$	_		_	$\frac{3}{2}$	\	. /	/ 1	

$$3^{\circ} f\left(\frac{\pi}{2} + x\right) = \cos(\pi + 2x) + 2\sin\left(\frac{\pi}{2} + x\right) = -\cos 2x + 2\cos x$$
$$f\left(\frac{\pi}{2} - x\right) = \cos(\pi - 2x) + 2\sin\left(\frac{\pi}{2} - x\right) = -\cos 2x + 2\cos x$$

 $4^{\circ} f(0) = 1 \text{ et } f'(x) = 2.$

Equation de la tangente : y = 2 x + 1

 $g(x) = f(x) - (2x + 1) = \cos 2x + 2\sin x - 2x - 1.$

 $g'(x) = -2 \sin 2 x + 2 \cos x - 2$.

$$0 \le x \le \frac{\pi}{6} \text{ donc } 0 \le \sin 2 \ x \le \frac{\sqrt{3}}{2} \text{ et } 0 \le \cos x \le \frac{1}{2} \ .$$

On a donc $-2 \times \frac{\sqrt{3}}{2} + 2 \times 0 - 2 \le g'(x) \le -2 \times 0 + 2 \times \frac{1}{2} - 2$

c'est-à-dire $-\sqrt{3}-2 \le g'(x) \le -1 \le 0$. g est donc décroissante sur $\left[0,\frac{\pi}{6}\right]$

pour tout réel x de $\left[0, \frac{\pi}{6}\right]$ on a : $g(x) \le 0$ (g(0) = 0) donc \mathcal{C}_f est au dessous de \mathcal{T}

Exercice2

partie A:

Soit g la fonction définie sur R par $g(x) = 4\sin(x) + 3$.

1) Etude des variations de g.

La fonction g est dérivable sur R car sin est dérivable sur R; et $g'(x) = 4\cos(x)$.

g' $\square x \square \ge 0$ sur $[0; 2\pi] \Leftrightarrow \cos x \ge 0 \Leftrightarrow 0 \le x \le \pi/2$ ou $3\pi/2 \le x \le 2\pi$

х	0		$\pi/2$		$3\pi/2$		2π
g'(x)		+	0	_	0	+	
g(x)			7 ~				→ 7
	3 -				→ -1 <i>─</i>		

Fomesoutra.com

Docs à portée de main

L'équation g(x) = 0 a exactement 2 solutions sur l'intervalle $[0; 2\pi]$

- Sur $[0; 2\pi]$, d'après le tableau de variation $g(x) \ge 3$, donc l'équation g(x) = 0 n'a pas de racine.
- Sur $[\pi/2; 3\pi/2]$, g est continue et strictement décroissante et 0 est entre $g(\pi/2)$ et $g(3\pi/2)$, alors d'après le théorème des valeurs intermédiaires, l'équation g(x) = 0 admet sur $[\pi/2; 3\pi/2]$ une unique solution: on la note α .
- Sur $[3\pi/2; 2\pi]$, g est continue et strictement croissante et 0 est entre $g(3\pi/2)$ et $g(2\pi)$, alors d'après le théorème des valeurs intermédiaires, l'équation g(x) = 0 admet sur $[3\pi/2; 2\pi]$ une unique solution: on la note β .
- Conclusion: sur $[0;2\square]$ l'équation g(x) = 0 admet deux solutions: α et β .

- 2. Encadrement d'amplitude 10^{-2} de chacune des solutions α et β .
- D'après la calculatrice, $g(3.98) \approx 0.0257$ et $g(3.98) \approx -9 \times 10^{-4}$ alors $g(3.98) \ge g(\alpha) \ge g(3.99)$; Or g est décroissante strictement sur $[\pi/2; 3\pi/2]$, alors $3,98 \le \alpha \le 3,99$.
- D'après la calculatrice, $g(5,43) \approx -0.0135$ et $g(5,44) \approx 0.0129$ alors $g(5,43) \leq g(\beta) \leq g(5,44)$; or g est croissante strictement sur, $[3\pi/2; 2\pi]$ alors $5,43 \le \beta \le 5,44$. Signe de g(x) sur l'intervalle $[0; 2\pi]$.

Il résulte de 1) et 2) que

х	0	$\pi/2$	α	$3\pi/2$	β	2π
g(x)	+	+	0	_	0	+

Partie B:

1.La fonction f est continue et dérivable sur R.

La fonction cos est définie et dérivable sur R, la fonction linéaire $x \mapsto x^2$ aussi, alors par composition $x \mapsto 2\cos(2x)$ est continue et dérivable sur R. D'autre part sin est continue et dérivable sur R, alors (comme somme) f est continue et dérivable sur R.

2) La fonction f est périodique.

Les fonctions sin et cos sont périodiques et de période $2\square$, alors il en est de même de la fonction f.

En effet, pour tout réel x: $f(x+2\pi) = 2\cos^2(x+2\pi) - 3\sin(x+2\pi) = 2\cos^2(x) - 3\sin(x) = f(x)$ Conclusion: f est périodique de période 2π .

3) Variations de f sur l'intervalle $[0; 2\pi]$

D'après 1), f et dérivable, de plus $(u^2)^2 = 2u^2u$ alors $f'(x) = -4\sin x \cos x - 3\cos x = -\cos x(4\sin x + 3)$

Par définition de α : $4\sin \alpha + 3 = 0$, donc $\sin \alpha = -\frac{3}{4}$.

$$f(\alpha) = 2\cos^2(\alpha) - 3\sin(\alpha) = 2(1 - \sin^2\alpha) - 3\sin\alpha = 2\left(1 - \frac{9}{16}\right) + 3 \times \frac{3}{4} = \frac{7}{8} + \frac{9}{4} = \frac{25}{8}$$

 $f(\alpha) = 2\cos^2(\alpha) - 3\sin(\alpha) = 2(1 - \sin^2\alpha) - 3\sin\alpha = 2\left(1 - \frac{9}{16}\right) + 3 \times \frac{3}{4} = \frac{7}{8} + \frac{9}{4} = \frac{25}{8}$ de même, $\sin\beta = -\frac{3}{4}$ et $f(\beta) = 2\cos^2(\beta) - 3\sin(\beta) = 2(1 - \sin^2\beta) - 3\sin\beta = 2\left(1 - \frac{9}{16}\right) + 3 \times \frac{3}{4} = \frac{7}{8} + \frac{9}{4} = \frac{25}{8}$

X	$0 \pi/2$	α	$3\pi/2$	β	2π
g(x)	+ 0 +	0	- 0 -	0	+
$-\cos x$	- 0 +		+ 0 -		_
f '(x)	- 0 +	0	- 0 +	0	_
f(x)	2	$\sqrt{\frac{2}{8}}$	$\frac{5}{3}$	$\sqrt{\frac{25}{8}}$	2

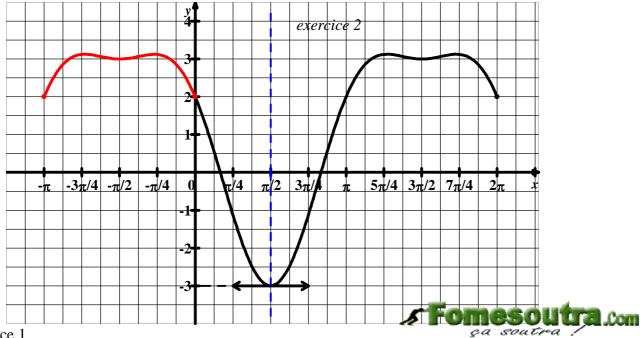
4) Abscisses des points d'intersection de C avec l'axe des abscisses sur [0 ;20].

Sur
$$[0; 2\pi]$$
: $f(x) = 0 \Leftrightarrow 2\cos^2 x - 3\sin x = 0 \Leftrightarrow 2(1-\sin^2 x) - 3\sin x = 0 \Leftrightarrow 2\sin^2 x + 3\sin x - 2 = 0$
 $(2\sin x - 1)(\sin x + 2) = 0$

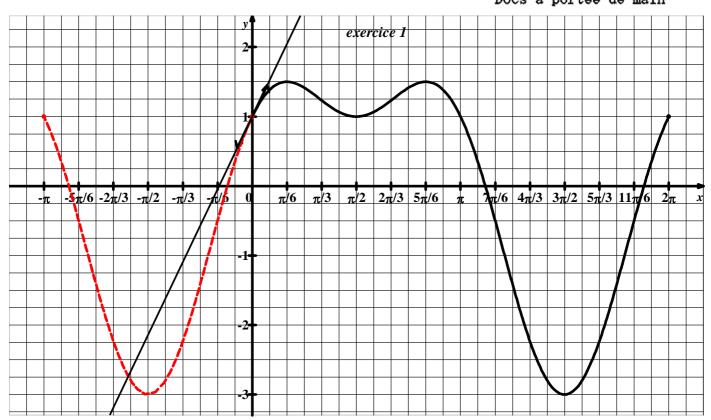
 \Leftrightarrow sin x = -2 < -1 (absurde car sin $x \in [-1, 1]$) ou

$$\sin x = \frac{1}{2} = \sin \frac{\pi}{6} \Leftrightarrow \begin{cases} x = \frac{\pi}{6} + 2k\pi \\ x = \pi - \frac{\pi}{6} + 2k\pi \end{cases} \quad k \in \mathbb{Z} \Leftrightarrow \begin{cases} x = \frac{\pi}{6} + 2k\pi \\ x = \frac{5\pi}{6} + 2k\pi \end{cases} \quad k \in \mathbb{Z}$$

Conclusion: Cf coupe (Ox) en deux points, d'abscisses respectives $\frac{\pi}{\zeta}$ et $\frac{5\pi}{\zeta}$.



Ca soatra Docs à portée de main Exercice 1



Exercice 3

1. a. La fonction cos est périodique et de période 2π , alors il en est de même de la fonction f.

En effet, pour tout réel x:
$$f(x+2\pi) = \frac{1}{2}\cos(2x+4\pi) - \cos(x+2\pi) = \frac{1}{2}\cos(2x) - \cos(x) = f(x)$$

Conclusion: f est périodique de période 2π .

b. pour démontrer que la courbe C admet l'axe des ordonnées pour axe de symétrie , il faut démontrer que la fonction f est paire . R est centré en zéro et pour tout réel x,

$$f(-x) = \frac{1}{2}\cos(-2x) - \cos(-x) = \frac{1}{2}\cos(2x) - \cos(x) = f(x)$$
, puisque la fonction cosinus est paire.

Ce qui démontre que f est paire.

- 2.a. f est continue et dérivable en tant que somme des fonctions trigonométriques et pour tout réel x, $f'(x) = -\sin(2x) + \sin(x) = -2\cos x \sin x + \sin x = \sin x(-2\cos x + 1)$.
 - d. pour tout réel $x \in]0; \pi[$, $\sin x > 0$. De plus $\sin 0 = \sin \pi = 0$

pour tout réel
$$x \in [0; \pi]$$
, $-2\cos x + 1 = 0 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{3}$

et $-2\cos x + 1 > 0 \Leftrightarrow \cos x < \frac{1}{2} \Leftrightarrow x > \frac{\pi}{3}$, puisque la fonction cosinus est décroissante sur $[0; \pi]$.

Le signe de f'(x) sur l'intervalle $[0; \pi]$ est donc :

X	0		$\pi/3$		π
$\sin x$	0	+		+	0
$-2\cos x + 1$	-1	_	0	+	3
f'(x)	0	_	0	+	0

3. a. on déduit de la question précédente que f est strictement décroissante sur $[0; \pi/3]$ et strictement croissante sur $[\pi/3; \pi]$.

X	0		$\pi/3$		π
f'(x)	0	_	0	+	0
f(x)	$-\frac{1}{2}$		$-\frac{3}{4}$		$\frac{3}{2}$

On la complète sur $[-\pi;\pi]$ par symétrie par rapport à l'axe des ordonnées (vert /noir).

Puis on la complète sur R par translations successives de vecteur $\pm 2\vec{i}$

