

THEME: SERIES DE FOURIER

TP

MATHEMATIQUES

Exercice 1. bts-2005

- 1. Soit la fonction numérique g définie sur $[0;\pi]$ par $g(t) = (1 + \cos 2t) \sin^2 t$.
 - (a) Montrer que $g'(t) = 4\sin t \cos^3 t$.
 - (b) En déduire les variations de g sur $[0;\pi]$
- 2. Soit la fonction numérique f définie sur R, paire, périodique de période 1 telle que :

$$\begin{cases} f(t) = 1/2 - \tau & \text{si } 0 \le t \le \tau \\ f(t) = -\tau & \text{si } \tau \le t \le 1/2 \end{cases}$$
 où τ est un nombre réel tel que $0 < \tau < 2$

(a) Uniquement dans cette question, on prendra $\tau = \frac{1}{6}$.

Représenter la fonction f sur l'intervalle [-1; 1] dans un repère orthonormal.

(b) On admet que la fonction f satisfait aux conditions de Dirichlet.

Soit S le développement en série de Fourier associé à la fonction f.

Montrer que :
$$S(t) = \sum_{n=1}^{\infty} \frac{1}{n\pi} \sin(2n\pi\tau)\cos(2\pi nt)$$

3. On décide de ne conserver que les harmoniques de rang inférieur ou égal à 2.

Soit la fonction numérique h définie sur R par : $h(t) = \frac{1}{\pi} \sin(2\pi\tau) \cos(2\pi t) + \frac{1}{2\pi} \sin(4\pi\tau) \cos(4\pi t)$

On désigne par E_h^2 le carré de la valeur efficace de h sur une période.

- (a) A l'aide de la formule de Parseval, déterminer E_h^2 .
- (b) Montrer que $E_h^2 = \frac{1}{2\pi^2} g(2\pi\tau)$.
- 4. Déterminer la valeur de τ rendant E_h^2 maximal.

Exercice 2-bts-2003

- A. Pour tout entier naturel n , on considère les intégrales : $I_n = \int_{\pi/2}^{\pi} \cos(nx) dx$ et $J_n = \int_0^{\pi/2} x \cos(nx) dx$.
- 1°) Montrer que $I_n = \frac{-1}{n} \sin \frac{n\pi}{2}$.
- 2°) A l'aide d'une intégration par parties , montrer que $J_n = \frac{\pi}{2n} \sin\left(\frac{n\pi}{2}\right) + \frac{1}{n^2} \cos\left(\frac{n\pi}{2}\right) \frac{1}{n^2}$
- 3°) Déterminer I_1 ; I_2 et I_3 , puis J_1 ; J_2 et J_3
- B. Soit f la fonction numérique définie sur \mathbb{R} , paire, périodique de période 2π telle que où E est un nombre réel donné, strictement positif.

 1°) Tracer, dans un repère orthogonal, la représentation graphique de la fonction f sur $f(t) = \frac{2E}{\pi}t \quad si \ 0 \le t \le \frac{\pi}{2}$ $f(t) = E \quad si \ \frac{\pi}{2} \le t \le \pi$
- 1°) Tracer, dans un repère orthogonal, la représentation graphique de la fonction f sur l'intervalle $\lceil -\pi; 3\pi \rceil$.

(on prendra E = 2 uniquement pour construire la courbe représentant f).

- 2°) Soit a_0 et pour tout entier naturel n supérieur ou égal à $1, a_n$ et b_n les coefficients de Fourier associés f.
 - a) Calculer a_0 .
 - b) Pour tout $n \ge 1$, donner la valeur de b_n .
 - c) En utilisant la partie A, vérifier que pour tout $n \ge 1$, $a_n = \frac{2E}{\pi^2} (2J_n + \pi I_n)$.

Partie C

- 1°) Déterminer les coefficients a_1 , a_2 , a_3 .
- 2°) Calculer F^2 , carré de la valeur efficace de la fonction f sur une période.

On rappelle que dans le cas où f est paire, périodique de période T, on a: $F^2 = \frac{2}{T} \int_0^{\frac{T}{2}} f^2(t) dt$

3°) On sait par ailleurs que la formule de Bessel-Parseval donne : $F^2 = a_0^2 + \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{2}$

Soit P le nombre défini par $P = a_0^2 + \frac{1}{2} \left(a_1^2 + a_2^2 + a_3^2 \right)$.

Calculer P , puis donner la valeur décimale au millième du $\frac{P}{F^2}$.

Ce dernier résultat très proche de 1 justifie que dans la pratique , on peut négliger les harmonique d'ordre supérieur à 3.

Exercice 3 - Toutes spécialités 2006. Les parties A et B sont indépendantes.

Partie A

Soient α et β deux nombres réels.

Soit f une fonction périodique de période 1, définie sur l'intervalle [0; 1[par $f(t) = \alpha t + \beta$.

On appelle a_0 , a_n et b_n les coefficients de Fourier associés à la fonction f.

- 1. Montrer que $a_0 = \frac{\alpha}{2} + \beta$.
- 2. Montrer que $b_n = \frac{-\alpha}{n\pi}$ pour tout nombre entier naturel n non nul.

On admet que $a_n = 0$ pour tout entier naturel n non nul.

3. On se propose de déterminer les nombres réels α et β pour que le développement S en série de

Fourier de la fonction f soit défini pour tout nombre réel t par $S(t) = \sum_{n=1}^{\infty} \frac{1}{n} \sin(2\pi nt)$.

(a) Déterminer les nombres réels α et β tels que $a_0 = 0$ et $b_n = \frac{1}{n}$.

En déduire l'expression de la fonction f.

(b) Représenter la fonction f sur l'intervalle [-2; 2] dans un repère orthogonal.

Partie B

On veut résoudre l'équation différentielle : s''(t) + s(t) = f(t)

On admet que l'on obtient une bonne approximation de la fonction s en remplaçant f(t) par les premiers termes du développement en série de Fourier de la fonction f obtenus dans la partie A, c'est-à-dire par :

$$f(t) = \sin(2\pi t) + \frac{1}{2}\sin(4\pi t)$$

Soit (E) l'équation différentielle ; $s''(t) + s(t) = \sin(2\pi t) + \frac{1}{2}\sin(4\pi t)$

- 1. Vérifier que la fonction s_1 définie pour tout nombre réel t par : $s_1(t) = \frac{1}{1 4\pi^2} \sin(2\pi t) + \frac{1}{2(1 16\pi^2)} \sin(4\pi t)$ est solution de l'équation différentielle (E).
- 2. Résoudre l'équation différentielle (E).

Corrigé

Exercice 1-2005 -bts

- 1. Soit la fonction numérique g définie sur $[0;\pi]$ par $g(t) = (1 + \cos 2t) \sin^2 t$.
- (a) Calculons g'(t): $g'(t) = -2\sin t \cos t \sin^2 t + (1 + \cos^2 t) 2\sin t \cos t = 2\sin t \cos t (-\sin^2 t + 1 + \cos^2 t)$ $= 2\sin t \cos t (\cos^2 t + \cos^2 t) = 4\sin t \cos^3 t$
- (b) Sur $[0;\pi]$, la fonction sinus est positive, par conséquent g'(t) est du signe de $\cos t$.

Si
$$t \in \left[0; \frac{\pi}{2}\right]$$
: $g'(t) > 0$ donc g est strictement croissante sur $\left[0; \frac{\pi}{2}\right]$

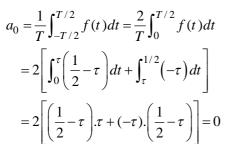
Si
$$t \in \left[\frac{\pi}{2}; \pi\right]$$
: $g'(t < 0)$ donc g est strictement décroissante sur $\left[\frac{\pi}{2}; \pi\right]$

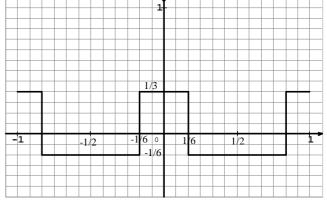
2. (a) Dans cette question, on a :
$$f(t) = \frac{1}{3} \operatorname{sur} \left[0; \frac{1}{6} \right] \operatorname{et} f(t) = -\frac{1}{6} \operatorname{sur} \left[\frac{1}{6}; \frac{1}{2} \right]$$

Avec la parité de la fonction f, on peut tracer la courbe sur l'intervalle $\left[-\frac{1}{2};\frac{1}{2}\right]$ en utilisant la symétrie par

rapport à l'axe des ordonnées. De plus, la fonction f est périodique de période 1, donc on obtient la représentation ci-contre :

(b) Calculons les coefficients de Fourier de la fonction f :





Pour
$$n \ge 1$$
, on a: $a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos nt dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos 2n\pi t dt = \frac{4}{T} \int_0^{\pi} f(t) \cos 2n\pi t dt$

$$a_n = 4 \left[\int_0^{\pi} \left(\frac{1}{2} - \tau \right) \cos 2n\pi t dt + \int_0^{\pi} \left(-\tau \right) \cos 2n\pi t dt \right] = 4 \left[\left(\frac{1}{2} - \tau \right) \left[\frac{\sin 2n\pi t}{2n\pi} \right]_0^{\tau} + \left(-\tau \right) \left[\frac{\sin 2n\pi t}{2n\pi} \right]_{\tau}^{1/2} \right]$$

$$a_n = 4 \left[\left(\frac{1}{2} - \tau \right) \left[\frac{\sin 2n\pi t}{2n\pi} \right]_0^{\tau} + (-\tau) \left[\frac{\sin 2n\pi t}{2n\pi} \right]_{\tau}^{1/2} \right] = \frac{2}{n\pi} \left[\left(\frac{1}{2} - \tau \right) \sin 2n\pi \tau - \tau \sin n\pi + \sin(2n\pi\tau) \right]$$
$$= \frac{2}{n\pi} \left[\left(\frac{1}{2} - \tau \right) \sin 2n\pi \tau + \sin(2n\pi\tau) \right] = \frac{1}{n\pi} \sin 2n\pi\tau$$

Pour $n \ge 1$, on a $b_n = 0$ car la fonction f est paire. On obtient donc $S(t) = \sum_{n=1}^{\infty} a_n \cos(2\pi nt)$

$$S(t) = \sum_{n=1}^{\infty} \frac{1}{n\pi} \sin(2n\pi\tau) \cos(2\pi nt) .$$

3. Ecrivons la formule de Parseval : $E^2 = a_0^2 + \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{2}$. On sait que $a_0 = 0$; calculons a_1 et a_2 :

$$a_1 = \frac{1}{\pi}\sin(2\pi\tau)$$
 et $a_2 = \frac{1}{\pi}\sin(4\pi\tau)$. On a donc :

$$E_h^2 = \frac{1}{2} \left[\frac{1}{\pi^2} \sin^2(2\pi\tau) + \frac{1}{4\pi^2} \sin^2(4\pi\tau) \right] = \frac{1}{2\pi^2} \left[\sin^2(2\pi\tau) + \frac{1}{4} \sin^2(4\pi\tau) \right], \text{ de plus, on sait que } : \sin(2u) = 2\sin u \cos u.$$

Donc on peut écrire : $\sin^2(4\pi\tau) = 4\sin^2(2n\pi\tau)\cos^2(2n\pi\tau)$.

$$\begin{split} E_h^2 &= \frac{1}{2\pi^2} \Bigg[\sin^2(2\pi\tau) + \frac{1}{4} \sin^2(4\pi\tau) \Bigg] = \frac{1}{2\pi^2} \Bigg[\sin^2(2\pi\tau) + \sin^2(2\pi\tau) \cos^2(2\pi t) \Bigg] = \frac{1}{2\pi^2} \Bigg[\sin^2(2\pi\tau) \left(1 + \cos^2(2\pi t) \right) \Bigg] \\ E_h^2 &= \frac{1}{2\pi^2} \Bigg[\sin^2(2\pi\tau) \left(1 + \cos^2(2\pi t) \right) \Bigg] = \frac{1}{2\pi^2} g(2\pi\tau) \; . \end{split}$$

4. D'après la question 1 . b), l'expression g(t) est maximum pour $\frac{\pi}{2}$

Par conséquent E_h^2 est maximum pour : $2\pi\tau = \frac{\pi}{2}$, d'où $\tau = \frac{1}{4}$.

Exercice-2 -bts-2003

1. Calculons
$$I_n: I_n = \int_{\pi/2}^{\pi} \cos(nx) dx = \left[\frac{1}{n} \sin nx\right]_{\pi/2}^{\pi} = \frac{1}{n} \sin \pi - \frac{1}{n} \sin n \frac{\pi}{2} = -\frac{1}{n} \sin \frac{n\pi}{2}$$
.

On obtient:
$$I_1 = -\sin\frac{\pi}{2} = -1$$
; $I_2 = -\frac{1}{2}\sin\pi = 0$ et $I_3 = -\frac{1}{3}\sin\frac{3\pi}{2} = \frac{1}{3}$.

On intègre par parties, en posant : u(x) = x u'(x) = 1 ; $v'(x) = \cos nx$ $v(x) = \frac{1}{n}\sin(nx)$ avec $n \in N$

Donc:
$$J_n = \int_0^{\frac{\pi}{2}} x \cos nx \, dx = \left[\frac{x}{n} \sin(nx) \right]_0^{\pi/2} - \frac{1}{n} \int_0^{\frac{\pi}{2}} \sin nx \, dx = \left[\frac{x}{n} \sin(nx) \right]_0^{\pi/2} + \left[\frac{1}{n^2} \cos nx \right]_0^{\pi/2}$$

$$J_n = \int_{0}^{\frac{\pi}{2}} x \cos nx \, dx = \frac{\pi}{2n} \sin(\frac{n\pi}{2}) - 0 + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos 0 = \frac{\pi}{2n} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} - \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \sin(\frac{n\pi}{2}) + \frac{1}{n^2} \cos \frac{n\pi}{2} = \frac{1}{n^2} \cos \frac{n\pi}{2} + \frac$$

D'où :
$$J_n = \frac{\pi}{2n}\sin(\frac{n\pi}{2}) + \frac{1}{n^2}\cos\frac{n\pi}{2} - \frac{1}{n^2}$$
. On obtient : $J_1 = \frac{\pi}{2}\sin(\frac{\pi}{2}) + \cos\frac{\pi}{2} - 1 = \frac{\pi}{2} - 1$

$$J_2 = \frac{\pi}{4}\sin(\pi) + \frac{1}{4}\cos\pi - \frac{1}{4} = -\frac{1}{2} \quad ; \quad J_3 = \frac{\pi}{6}\sin(\frac{3\pi}{2}) + \frac{1}{9}\cos\frac{3\pi}{2} - \frac{1}{9} = -\frac{\pi}{6} - \frac{1}{9} \, .$$

Partie B

1.représentation graphique de la fonction f .

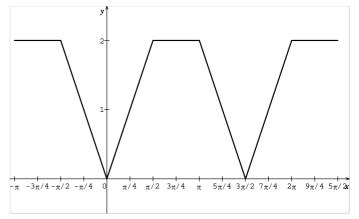
2.a. Calculons a_0 :

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt = \frac{1}{\pi} \int_0^{\pi} f(t)dt$$
, car f est

paire et 2π -périodique ; donc

$$a_0 = \frac{1}{\pi} \left[\int_0^{\pi/2} \frac{2E}{\pi} t \, dt + \int_0^{\pi/2} E dt \right] .$$

$$a_0 = \frac{1}{\pi} \left[\frac{2E}{\pi} \frac{t^2}{2} + Et \right]_0^{\pi/2} = \frac{1}{\pi} \left[\frac{2E}{\pi} \frac{\pi^2}{8} + E \frac{\pi}{2} \right] = \frac{1}{\pi} \left(\frac{3E\pi}{4} \right) = \frac{3E}{4}$$



b. la fonction f est paire donc pour tout entier $n \ge 1$, on a $b_n = 0$.

c. Calculons
$$a_n$$
, pour $n \ge 1$: $a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos nt dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt dt$.

Car
$$t \mapsto f(t)\cos nt$$
 est paire; donc $a_n = \frac{2}{\pi} \int_0^{\pi/2} \frac{2E}{\pi} t\cos nt dt + \frac{2}{\pi} \int_{\pi/2}^{\pi} E\cos nt dt = \frac{4E}{\pi^2} J_n + \frac{2E}{\pi} I_n$

et
$$a_n = \frac{2E}{\pi^2} (2J_n + \pi I_n)$$
. Calculons $a_{4p} = \frac{2E}{\pi^2} (2J_{4p} + \pi I_{4p}) = 0$, puisque $I_{4p} = -\frac{1}{4p} \sin \frac{4p\pi}{2} = -\frac{1}{4p} \sin 2p\pi = 0$

et
$$J_{4p} = \frac{\pi}{8p}\sin(2p\pi) + \frac{1}{16p^2}\cos 2p\pi - \frac{1}{16p^2} = 0 + \frac{1}{16p^2} - \frac{1}{16p^2} = 0$$
.

Partie C

1. calculons
$$a_1$$
, a_2 , a_3 : $a_1 = \frac{2E}{\pi^2} (2J_1 + \pi I_1) = \frac{2E}{\pi^2} (2(\frac{\pi}{2} - 1) - \pi) = -\frac{4E}{\pi^2}$

$$a_2 = \frac{2E}{\pi^2} \left(2\left(-\frac{1}{2} \right) + \pi \times 0 \right) = \frac{-2E}{\pi^2} \quad \text{et} \quad a_3 = \frac{2E}{\pi^2} \left(2J_3 + \pi I_3 \right) = \frac{2E}{\pi^2} \left(2\left(-\frac{\pi}{6} - \frac{1}{9} \right) + \frac{\pi}{3} \right) = \frac{2E}{\pi^2} \left(-\frac{\pi}{3} - \frac{2}{9} + \frac{\pi}{3} \right) = -\frac{4E}{9\pi^2}.$$

Calculons F^2 :

$$F^{2} = V^{2} eff = \frac{2}{T} \int_{0}^{T/2} f(t)^{2} dt = \frac{1}{\pi} \int_{0}^{\pi/2} f(t)^{2} dt = \frac{1}{\pi} \left[\frac{4E^{2}}{\pi^{2}} \int_{0}^{\pi/2} t^{2} dt + \int_{0}^{\pi/2} E^{2} dt \right] = \frac{4E^{2}}{\pi^{3}} \left[\frac{t^{3}}{3} \right]_{0}^{\pi/2} + \frac{1}{\pi} \left[E^{2} t \right]_{0}^{\pi/2}$$

$$= \frac{4E^{2} \pi^{3}}{24\pi^{3}} + \frac{1}{\pi} E^{2} \frac{\pi}{2} = \frac{E^{2}}{6} + \frac{E^{2}}{2} = \frac{2E^{2}}{3}$$

3. Calculons P:
$$P = a_0^2 + \frac{1}{2} \left(a_1^2 + a_2^2 + a_3^2 \right) = \left(\frac{9E^2}{16} \right) + \frac{1}{2} \left[\left(\frac{16E^2}{\pi^4} \right) + \left(\frac{4E^2}{81\pi^4} \right) + \left(\frac{16E^2}{81\pi^4} \right) \right] = \frac{9E^2}{16} + \frac{818E^2}{81\pi^4}.$$

Calculons
$$\frac{P}{F^2}$$
: $\frac{P}{F^2} = \left(\frac{9E^2}{16} + \frac{818E^2}{81\pi^4}\right) \times \frac{3}{2E^2} = \frac{37}{32} + \frac{409}{27\pi^4} \approx 0,999.$

Exercice 3-BTS-2006

1.
$$a_0 = \frac{1}{T} \int_0^T (\alpha t + \beta) dt = \left[\alpha \frac{t^2}{2} + \beta t \right]_0^1 = \frac{\alpha}{2} + \beta \text{ avec } T = 1.$$

2. La pulsation est
$$\omega = 2\pi$$
 $b_n = \frac{2}{T} \int_0^T (\alpha t + \beta) \sin(2\pi nt) dt = 2 \int_0^1 (\alpha t + \beta) \sin(2\pi nt) dt$ avec $T = 1$.

On intègre par parties en posant : $u(t) = \alpha t + \beta$, alors $u'(t) = \alpha$; $v'(t) = \sin(2\pi nt)$, alors $v(t) = -\frac{1}{2\pi n}\cos(2\pi nt)$

$$b_n = 2\int_0^1 \left(\alpha t + \beta\right) \sin(2\pi nt) dt = 2\left(-\left[\frac{\left(\alpha t + \beta\right) \cos(2\pi nt)}{2\pi n}\right]_0^1 + \frac{\alpha}{2\pi n}\int_0^1 \cos(2\pi nt) dt\right) \text{ et } b_n = 2\left(\frac{-\alpha}{2\pi n} + 0\right) = \frac{-\alpha}{\pi n}.$$

$$b_n = 2\left(\frac{-1}{2\pi n}\left[\left(\alpha + \beta\right) - \beta\right] + \frac{\alpha}{2\pi n}\left[\frac{\sin(2\pi nt)}{2\pi n}\right]_0^1\right)$$

3.a. On veut que
$$a_0 = 0$$
 et $b_n = \frac{1}{n}$, donc d'après 3. on a :
$$\begin{cases} \frac{\alpha}{2} + \beta = 0 \\ \frac{-\alpha}{n\pi} = \frac{1}{n} \end{cases} \Leftrightarrow \begin{cases} \alpha = -\pi \\ \beta = \frac{\pi}{2} \end{cases}.$$

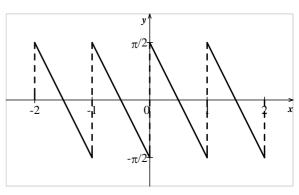
L'expression de f est alors $f(t) = -\pi t + \frac{\pi}{2}$.

b. on construit alors la courbe représentative de f sur [-2;2]. Partie B

1.a on a:
$$s_1(t) = \frac{1}{1 - 4\pi^2} \sin(2\pi t) + \frac{1}{2(1 - 16\pi^2)} \sin(4\pi t)$$
;

$$s'_{1}(t) = \frac{2\pi}{1 - 4\pi^{2}}\cos(2\pi t) + \frac{4\pi}{2(1 - 16\pi^{2})}\cos(4\pi t)$$

$$s''_1(t) = -\frac{4\pi^2}{1 - 4\pi^2} \sin(2\pi t) - \frac{16\pi^2}{2(1 - 16\pi^2)} \sin(4\pi t) .$$



$$\begin{split} s_1''(t) + s_1(t) &= -\frac{4\pi^2}{1 - 4\pi^2} \sin(2\pi t) - \frac{16\pi^2}{2(1 - 16\pi^2)} \sin(4\pi t) + \frac{1}{1 - 4\pi^2} \sin(2\pi t) + \frac{1}{2(1 - 16\pi^2)} \sin(4\pi t) \\ &= \frac{1 - 4\pi^2}{1 - 4\pi^2} \sin(2\pi t) + \frac{1 - 16\pi^2}{2(1 - 16\pi^2)} \sin(4\pi t) = \sin(2\pi t) + \frac{1}{2} \sin(4\pi t) \end{split}$$

Par conséquent s_1 est une solution particulière de l'équation différentielle (E).

2. Il faut chercher la solution générale de l'équation différentielle homogène associée à (E): s''(t) + s(t) = 0.

L'équation caractéristique associée est $r^2 + 1 = 0$, dont le discriminant est égal à -1 . cette équation possède deux racine complexes conjuguées qui sont j et -j.

La solution générale de l'équation homogène est alors : $s_0(t) = \lambda \sin t + \mu \cos t$ avec $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$.

La solution générale de (E) est donnée par la somme entre une solution particulière de l'équation complète et la solution générale de l'équation homogène associée , d'où :

$$s_0(t) = \lambda \sin t + \mu \cos t s_0(t) = \lambda \sin t + \mu \cos t + \frac{1}{1 - 4\pi^2} \sin(2\pi t) + \frac{1}{2(1 - 16\pi^2)} \sin(4\pi t).$$