

DM

N°2

MATHEMATIQUES

Exercice 1

1. On considère la fonction causale e définie sur l'ensemble des nombres réels par :

$$e(t) = 4 \left[U(t) - U(t-2) \right]$$

Tracer la représentation graphique de la fonction e dans un repère orthonormal.

- 2. On considère la fonction causale *s* définie par : $s(t) = 4\left(1 e^{-t/4}\right)U(t) 4\left(1 e^{-(t-2)/4}\right)U(t-2)$
- a. Vérifier que s(t), t désignant un nombre réel quelconque, est définie par :

$$\begin{cases} s(t) = 0 & \text{si } t < 0 \\ s(t) = 4 - 4e^{-t/4} & \text{si } 0 \le t \le 2 \\ s(t) = 4e^{-t/4} \left(e^{1/2} - 1 \right) & \text{si } t \ge 2 \end{cases}$$

- b. Justifier que la fonction s est croissante sur l'intervalle]0;2[.
- c. Déterminer $\lim_{\substack{t \to 2 \\ t < 2}} s(t)$
- 3.(a) Déterminer le sens de variation de la fonction s sur l'intervalle $]2;+\infty[$.
 - (b) Déterminer $\lim_{t \to +\infty} s(t)$
- 4. Tracer la courbe représentative de la fonction s dans un repère orthonormal

Exercice 2

Soit f, la fonction définie sur R par : $f(x) = \sin x(\cos x + 1)$.

- 1° Justifier que l'on peut réduire l'intervalle d'étude à $[0;\pi]$.
- 2° Montrer que $f'(x) = (\cos x + 1)(2\cos x 1)$ puis dresser le tableau de variations de $f \sin [0; \pi]$. (on justifiera les signes trouvés dans le tableau).
- 3° On appelle T la tangente à la courbe C_f au point d'abscisse 0. Déterminer une équation de T.
- 4° Construire T et C_f sur l'intervalle $[-\pi; 3\pi]$ en justifiant la construction.

Exercice 3

Partie A:

Soit g la fonction définie sur R par $g(x) = 4\sin x + 3$.

- 1) Montrer que l'équation g(x) = 0 a exactement 2 solutions sur l'intervalle $[0; 2\pi]$. On notera α et β ces solutions ($\alpha < \beta$).
- 2) Donner en le justifiant, un encadrement d'amplitude 10^{-2} de chacune de ces solutions.
- 3) En déduire le signe de g(x) sur l'intervalle $[0; 2\pi]$.

Partie B:

Soit f la fonction définie sur R par $f(x) = 2\cos^2(x) - 3\sin(x)$ et C sa courbe représentative dans un repère orthogonal $(O; \vec{i}; \vec{j})$ (on prendra pour unité 1cm sur l'axe des ordonnés et on représentera π par 3 cm sur l'axe des abscisses).

- 1) Pourquoi f est-elle continue et dérivable sur R?
- 2) Montrer que f est périodique.
- 3) Etudier les variations de f sur l'intervalle $[0;2\pi]$ et dresser son tableau de variations sur cet intervalle.
- 4) Déterminer les abscisses des points d'intersection de C avec l'axe des abscisses sur $[0;2\pi]$. Tracer C sur $[0;2\pi]$, puis sur $[-\pi;0]$.

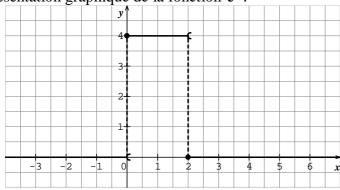
Corrigé

Exercice 1

1.a.
$$e(t) = 4[U(t) - U(t-2)]$$

	$-\infty$	0		2	$+\infty$
U(t)	0		1	1	
R (t-2)	0		0	1	
$e(t) = 4 \left[U(t) - U(t-2) \right]$	0		4	0	

Représentation graphique de la fonction e:



2.
$$s(t) = 4(1 - e^{-t/4})U(t) - 4(1 - e^{-(t-2)/4})U(t-2)$$

	-∞	0	2	$+\infty$
$4(1-e^{-t/4})U(t)$	0	$4(1-e^{-t/4})$	$4(1-e^{-t/4})$	
$4(1-e^{-(t-2)/4})U(t-2)$	0	0	$4(1-e^{-(t-2)/4})$	
s(t) =	0	$4(1-e^{-t/4})$	$4e^{-t/4}(e^{1/2}-1)$	

Par conséquent,

Comme U(t) = U(t-2) = 0 donc pour tout $t \in]-\infty; 0[$, donc s(t) = 0;

U(t) = 1 pour tout $t \ge 0$ et U(t-2) = 0, pour tout t < 2, alors $4(1 - e^{-t/4})$ pour tout $t \in [0; 2[$.

Pour tout $t \in [2; +\infty[$, U(t) = U(t-2) = 1, alors on a:

$$s(t) = 4(1 - e^{-t/4}) - 4(1 - e^{-(t-2)/4}) = -4e^{-t/4} + 4e^{-(t-2)/4}$$

$$s(t) = -4e^{-t/4} + 4e^{-t/4} \times e^{1/2} = 4e^{-t/4}(e^{1/2} - 1)$$

- 2. a La fonction s est dérivable sur l'intervalle]0;2[et $s'(t)=e^{-t/4}$. Or on sait que $t\mapsto e^{at}$ est strictement positive pour tous réels a et t sur l'intervalle]0;2[, par conséquent la fonction s est strictement croissante sur l'intervalle]0;2[.
 - b. On a $\lim_{x \to 2^{-}} e^{-t/4} = e^{1/2}$, alors $\lim_{x \to 2^{-}} s(t) = 4(1 e^{-1/2}) \approx 1,574$.
- 3. a. La fonction *s* est dérivable sur l'intervalle]2;+ ∞ [et $s'(t) = -e^{-t/4}(e^{1/2} 1)$.

Or on sait que $t\mapsto e^{at}$ est strictement positive pour tous réels a et t sur l'intervalle $]2;+\infty[$,

De plus $e^{1/2} - 1 > 0$, on en déduit que s'(t) < 0 sur l'intervalle]2; + ∞ [.

Par conséquent la fonction s est strictement décroissante sur l'intervalle $]2;+\infty[$.

b . On a , à l'aide du formulaire et du théorème sur la limite des fonctions composées , $\lim_{x\to +\infty}e^{-t/4}=0$

alors
$$\lim_{x \to +\infty} s(t) = 0$$
.

4.



Exercice 2

f est périodique de période 2π . On peut limiter l'étude de la fonction à un intervalle de longueur 2π . Pour obtenir la totalité de la représentation graphique de la fonction f on utilise des translations de vecteur $-2\pi \vec{i}$ ou $2\pi \vec{i}$.

 $f(-x) = \sin(-x)(\cos(-x) + 1) = -\sin x(\cos x + 1) = -f(x)$. La fonction f est impaire on peut limiter l'étude de la fonction à "intervalle $[0:2\pi]$.

Pour obtenir la totalité de la représentation graphique de la fonction f en on utilise d'abord la symétrie de centre O puis des translations de vecteur $-2\pi \vec{i}$ ou $2\pi \vec{i}$.

$$2^{\circ} f'(x) = \cos x(\cos x + 1) + \sin x(-\sin x) = \cos^2 x + \cos x - \sin^2 x = 2\cos^2 x + \cos x - 1$$
.

On pose $u = \cos x$ et on factorise $2u^2 + u - 1 = (u + 1)(2u - 1)$. On a bien : $f'(x) = (\cos(x) + 1)(2\cos(x) - 1)$. Signe de f'(x).

Pour tout $x \in [0, \pi]$: $-1 \le \cos x \le 1$, donc $\cos(x) + 1 \ge 0$ et $\cos(x) = -1 \iff x = \pi$

$$2\cos(x)-1 \ge 0 \iff 2\cos(x) \ge 1 \iff \cos(x) \ge \frac{1}{2} \iff 0 \le x \le \frac{\pi}{3}$$
.

autre variante

Pour tout $x \in [0, \pi]$: $\cos(x) + 1 = 0$ et $\cos(x) = -1 \iff x = \pi$ Ou

$$2\cos(x)-1=0 \iff 2\cos(x)=1 \iff \cos(x)=\frac{1}{2} \iff x=\frac{\pi}{3}$$
.

La fonction f 'est continue sur $[0;\pi]$, elle garde un signe constant sur les intervalles où elle ne s'annule pas. Si $x \in [0;\pi/3]$ $x \in [0;\pi/3]$, f'(x) est du signe $f(\pi/6)$:

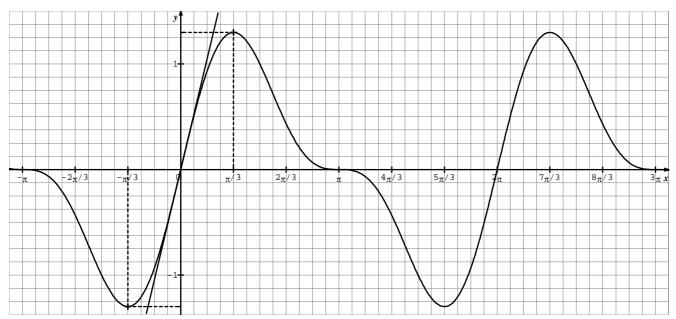
$$f'(\pi/6) = (\cos(\pi/6) + 1)(2\cos(\pi/6) - 1) = (\frac{\sqrt{3}}{2} + 1) \times (\sqrt{3} - 1) > 0$$

Si $x \in [\pi/3; \pi]$, f'(x) est du signe de $f'(\pi/2) = (\cos(\pi/2) + 1) \times (2\cos(\pi/2) - 1) = -1 < 0$.

$$3^{\circ} f(0) = 0$$
 et $f'(0) = (\cos(0) + 1)(2\cos(0) - 1) = 2$

Equation de T: $y = f'(0)(x-0) + f(0) = 2(x-0) + 0 = 2xy = 0 + 2 \times (x-0)$, c'est-à-dire y = 2x.

 4° On utilise d'abord la symétrie de centre O puis la translation de vecteur $2\pi \vec{i}$



Exercice 3

Partie A:

Soit g la fonction définie sur R par $g(x) = 4\sin(x) + 3$.

1.La fonction g est dérivable sur R car sin est dérivable sur R ; et $g'(x) = 4\cos x$ g'(x) a le même signe que $\cos x$, donc $g'(x) \ge 0$ sur $[0; \pi/2] \cup [3\pi/2]$ et $g'(x) \le 0$ sur $[\pi/2; 3\pi/2]$.

X	0		$\pi/2$		$3\pi/2$		2π
g'(x)	4	+	0	_	0	+	4
g(x)	3		▼ 7 \		· -1		₹ 3

L'équation g(x) = 0 a exactement 2 solutions sur l'intervalle $[0; 2\pi]$

- Sur $[0;\pi/2]$, d'après le tableau de variation $g(x) \ge 3$, donc l'équation g(x) = 0 n'a pas de racine.
- Sur $[\pi/2; 3\pi/2]$, g est continue et strictement décroissante et 0 est entre $g(\pi/2)$ et $g(3\pi/2)$, Alors d'après le théorème des valeurs intermédiaires, l'équation g(x) = 0 admet sur $[\pi/2; 3\pi/2]$ une unique solution: on la note α .
- Sur $[3\pi/2;2\pi]$, g est continue et strictement croissante et 0 est entre $g(\pi/2)$ et $g(3\pi/2)$, alors d'après le théorème des valeurs intermédiaires, l'équation g(x) = 0 admet sur $[3\pi/2;2\pi]$ une unique solution: on la note β .
- Conclusion: sur $[0; 2\pi]$ l'équation g(x) = 0 admet deux solutions: α et β .
- **2.**Encadrement d'amplitude 10^{-2} de chacune des solutions α et β .
- D'après la calculatrice, $g(3.98) \approx 0.0257$ et $g(3.99) \approx -9 \times 10^{-4}$ alors $g(3.99) \leq g(\alpha) \leq g(3.98)$; Or g est décroissante strictement sur $[\pi/2; 3\pi/2]$, alors $3.98 \leq \alpha \leq 3.99$.
- D'après la calculatrice, $g(5,43) \approx -0.0135$ et $g(5,44) \approx 0.0129$ alors $g(5,43) \leq g(\alpha) \leq g(5,44)$; or g est croissante strictement sur $[3\pi/2;2\pi]$ alors $5,43 \leq \alpha \leq 5,44$.

Signe de g(x) sur l'intervalle $[0; 2\pi]$.

Il résulte de 1) et 2) que

 c ac i)	ct <i>2)</i>	que									
X	0		$\pi/2$		α		$3\pi/2$		β		2π
g(x)		+	+	+	0	_	_	_	0	+	

Partie B:

Soit f la fonction définie sur R par $f(x) = 2\cos^2(x) - 3\sin(x)$ et C sa courbe représentative dans un repère

orthogonal $(O; \vec{i}; \vec{j})$ (on prendra pour unité 1cm sur l'axe des ordonnés et on représentera π par 3 cm sur l'axe des abscisses).

- 1. La fonction cos est définie et dérivable sur R , la fonction carré aussi, alors par composition $x \mapsto \cos 2x$ est continue et dérivable sur R . D'autre part sin est continue et dérivable sur R ,alors (comme somme) f est continue et dérivable sur R .
- 1. Les fonctions sin et cos sont périodiques et de période 2π , alors il en est de même de la fonction f. En effet, pour tout réel x: $f(x+2\pi) = 2\cos^2(x+2\pi) 3\sin(x+2\pi) = 2\cos^2(x) 3\sin(x) = f(x)$. Conclusion: f est périodique de période 2π .
- 3. D'après 1), f et dérivable, de plus $(u^2)' = 2u'u$ alors

 $f'(x) = -4\sin x \cos x - 3\cos x = -\cos x(4\sin + 3) = (-\cos x)g(x)$. Par définition de α :

$$4\sin\alpha + 3 = 0 \Leftrightarrow \sin\alpha = -3/4 \cdot f(\alpha) = 2\cos^{2}\alpha - 3\sin\alpha = 2(1 - \sin^{2}\alpha) + 3\sin\alpha = 2\left(1 - \frac{9}{16}\right) - 3\left[-\frac{3}{4}\right] = \frac{25}{8}$$

De même $\sin \beta = -3/4$ et $f(\beta) = \frac{25}{8}$

х	0	$\pi/2$		α		$3\pi/2$		β		2π
cos x	+	0	_		_	0	+		+	
g(x)	+	+	+	0	_	0	_	0	+	
f '(x)	_	0	+	0	_	0	+	0	_	
f(x)	2	▲ -3/		25/8		* 3/		25/8		^ 2

4. Abscisses des points d'intersection de C avec l'axe des abscisses sur $[0;2\pi]$.

Sur
$$[0;2\square]$$
: $f(x) = 0 \Leftrightarrow 2\cos^2(x) - 3\sin(x) = 0 \Leftrightarrow -2\sin^2 x + 3\sin x - 2 = 0 \Leftrightarrow (2\sin x - 1)(\sin x + 2) = 0$
 $\Leftrightarrow \sin x = 1/2 \text{ ou } \sin x = -2 \text{ (absurde car } \sin x \in [-1;1]). \Leftrightarrow x = \pi/6 \text{ ou } x = 5\pi/6$

Conclusion: C coupe (Ox) en deux points, d'abscisses respectives $x = \pi/6$ et $x = 5\pi/6$.

