

University of Technologies and Solutions Integrator

Epreuve de : MATHEMATIQUES GENERALES, STATISTIQUES & PROBABILITE	DIEGONANTO	Année académique : 2021 - 2022 Filière : IDA Durée : 2 Coefficient :
--	------------	---

EXERCICE 1 : Étude d'une famille de fonctions

A tout entier naturel non nul n, on associe la fonction f_n définie sur $\mathbb R$ par

$$f_n(x) = \frac{4e^{nx}}{e^{nx} + 7}$$

On note C_n la courbe représentative de f_n dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

PARTIE I: Etude de la fonction f_1 définie sur \mathbb{R} par $f_1(x) = \frac{4e^x}{e^{x+7}}$

- 1. a) Démontrer que la courbe C_1 admet deux asymptotes dont on précisera les équations.
 - b) Démontrer que la fonction f_1 est strictement croissante sur \mathbb{R} .
 - c) Démontrer que pour tout réel x on a $0 < f_1(x) < 4$
- 2. a) Déterminer les coordonnées de I_1 , intersection de la droite (D) d'équation y = 2 et de la courbe C_1 .
 - b) Déterminer une équation de la tangente (T_1) à la courbe C_1 au point I_1 .
- 3. a) Montrer que pour tout réel $m \in]0$; 4[, l'équation $f_1(x) = m$ admet une solution unique dans \mathbb{R} . On notera α cette solution.
 - b) Déterminer l'expression exacte de α en fonction de m.
- 4. a) Dresser le tableau de variation de la fonction f_1 .
 - b) Justifier que la courbe C_1 passe par le point $A(0; \frac{1}{2})$.
 - c) Tracer dans un même repère, C_1 , (D), ses asymptotes et sa tangente (T_1) .

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

PARTIE II : Etude de certaines propriétés de f_n

- 1. a) Pour tout entier naturel non nul n, démontre que les courbes \mathcal{C}_n admettent les mêmes asymptotes.
 - b) Justifie que toutes les courbes C_n passent par le même point $A(0; \frac{1}{2})$.
 - c) Justifie que pour tout entier naturel non nul n, $f_n'(x) = \frac{28ne^{nx}}{(e^{nx}+7)^2}$
 - d) En déduire que les fonctions f_n sont strictement croissantes sur \mathbb{R} .
- 2. a) Montrer que pour tout entier non nul n, la courbe C_n et la droite d'équation y=2 ont un unique point d'intersection dont on précisera les coordonnées. On note I_n ce point.
 - b) Déterminer une équation de la tangente (T_n) à la courbe C_n au point I_n .
- c) Montrer que les tangentes (T_n) sont concourantes en un point dont on déterminera les coordonnées.

(Indication : on peut constater qu'elles ont toutes la même ordonnée à l'origine).

3. Tracer C_1 , C_2 et C_3 dans un même repère.

EXERCICE 2 : Algèbre linéaire.

L'espace vectoriel \mathbb{R}^3 est muni de sa base canonique $\mathcal{B}=(e_1,e_2,e_3)$

On considère l'endomorphisme f de \mathbb{R}^3 définie par :

$$f(1,0,0) = (-4,6,-6)$$

$$f(1,1,0) = (-1,5,-3)$$

$$f(0,-2,1) = (0,-4,2)$$

- 1. a) Ecrire $f(e_1)$; $f(e_2)$ et $f(e_3)$ en fonction de e_1 , e_2 et e_3 .
 - b) En déduire que la transposée de la matrice A notée t_A est telle que :

$$t_A = \begin{pmatrix} -4 & 6 & -6 \\ 3 & -1 & 3 \\ 6 & -6 & 8 \end{pmatrix}$$

- 2. a) L'endomorphisme f est-il un automorphisme de \mathbb{R}^3 ?
 - b) Déterminer le noyau, l'image et le rang de f.

REPUBLIQUE DE COTE D'IVOIRE Union - Discipline -Travail

Academy Algaritation Academy

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

- 3. On considère les vecteurs $\vec{u} = (1, -1, 1)$, $\vec{v} = (1, 2, 0)$ et $\vec{w} = (0, -2, 1)$
 - a) Vérifier que $\mathcal{B}' = \{\vec{u}, \vec{v}, \vec{w}\}$ forme une base de \mathbb{R}^3 .
 - b) Donner la matrice de f dans cette base B'.
- 4. a) Donner la matrice de passage P de la base canonique \mathcal{B} à la base \mathcal{B} '.
 - b) Montrer que l'inverse de la matrice P est :

$$P^{-1} = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix}$$

c) Vérifier que $A = PDP^{-1}$ puis Calculer A^n .