MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

EXAMEN DE MATHEMATIQUES

Année Académique 2020 - 2021

Dure: 2H00

Niveau : BTS2 IDA Date : 17 – 06 - 2021

EXERCICE 1: 12 points

L'espace vectoriel IR³ est muni de la base canonique $B=(e_1,e_2,e_3)$. On considère l'endomorphisme f de IR³ définie par :

$$f(x,y,z) = (2x - 2y + z; 2x - 3y + 2z; -x + 2y)$$

- Déterminer la matrice A associée à f relativement à la base canonique de IR³.
- 2. a) L'endomorphisme f est-il un automorphisme de IR³ ? Justifier votre réponse.
 - b) Déterminer kerf et l'image Imf.
- 3. Pour tout réel x, on pose K = A xI et $P(x) = \det K$
 - a) Calculer P(x). Que représente P(x)?
 - b) En déduire les racines de P(x). Que représentent les racines de P(x)?
 - c) f est elle diagonalisable ? Justifier votre réponse.
- 4. Soit le système d'équations linéaires (S) dont l'écriture matricielle est :

$$X = (x, y, z) \in \mathbb{R}^3, (S) \Leftrightarrow AX = -3X$$

Résoudre (S).

- 5. Soient les vecteurs $v_1 = (2; 1; 0), v_2 = (1; 0; -1)$ et $v_3 = (1; 2; -1)$ de \mathbb{R}^3 .
 - a) Montrer que la famille de vecteurs $B' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
 - b) Ecrire la matrice C de f dans la base B'. Quelle est sa nature ?
 - c) Déterminer P la matrice de passage de la base B à la base B'.
- 6. Déterminer l'inverse de P et montrer que $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$

REPUBLIQUE DE COTE D'IVOIRE Union - Discipline -Travail

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

EXERCICE 2: 8 points

Dans une compagnie d'assurance, on a constaté que sur les 1200 assurés, 60 avaient envoyé au moins une déclaration de sinistre dans l'année.

On dira dans tout cet exercice que ces 60 dossiers sont de « types DS ».

On prélève au hasard et avec remise n dossiers parmi les 1200 dossiers des assurés. X est la variable aléatoire donnant, parmi les n dossiers prélevés, le nombre de dossiers de « types DS ». Les résultats des probabilités demandées seront donnés sous forme décimale, arrondies à 10^{-2} près.

1°) Quelle est la loi suivie par X ? Justifier votre réponse.

Donner les paramètres de cette loi.

- 2°) Dans cette question, on prend n = 10. Calculer les probabilités :
 - a) Pour qu'un seul dossier soit de « type DS » ;
 - b) Pour qu'il ait, parmi ces 10 dossiers, au moins un dossier de « type DS ».
- 3°) Dans cette question, on prend n = 60.
 - a) Montrer que la loi suivie par X peut être approchée par la loi Poisson dont on précisera le paramètre. On note Y la variable aléatoire suivant cette loi de Poisson.
 - b) Calculer la probabilité $P(Y \ge 2)$.
- 4°) Dans cette question, on prend n = 200.
 - a) Montrer que la loi suivie par X peut être approchée par la loi Normale dont on précisera les paramètres. Soit Z la variable aléatoire suivant cette loi de Normale.
 - b) Calculer les probabilités suivantes : $P(Z \le 9)$ et $P(Z \ge 15)$