Calcul de développements limités

Exercice 1 [01447] [correction]

Déterminer les développements limités suivants :

a) $DL_3(\pi/4)$ de $\sin x$ b) $DL_4(1)$ de $\frac{\ln x}{x^2}$ c) $DL_5(0)$ de $\sinh x \cosh(2x) - \cosh x$.

Exercice 2 [00226] [correction]

Déterminer les développements limités suivants :

a) $DL_3(0)$ de $\ln\left(\frac{x^2+1}{x+1}\right)$ b) $DL_3(0)$ de $\ln(1+\sin x)$ c) $DL_3(1)$ de $\cos(\ln(x))$

Exercice 3 [00745] [correction]

Déterminer les développements limités suivants :

a) $DL_3(0)$ de $\ln(1+e^x)$ b) $DL_3(0)$ de $\ln(2+\sin x)$ c) $DL_3(0)$ de $\sqrt{3+\cos x}$

Exercice 4 [00292] [correction]

Déterminer les développements limités suivants :

a) $DL_3(0)$ de $e^{\sqrt{1+x}}$ b) $DL_3(0)$ de $\ln(1+\sqrt{1+x})$ c) $DL_3(0)$ de $\ln(3e^x+e^{-x})$

Exercice 5 [01448] [correction]

Déterminer les développements limités suivants :

a) $DL_2(0)$ de $(1+x)^{1/x}$ b) $DL_4(0)$ de $\ln(\frac{\sin x}{x})$ c) $DL_4(0)$ de $\ln(\frac{\sin x}{x})$

Exercice 6 [01451] [correction]

Déterminer les développements limités suivants :

a) $DL_3(0)$ de $\frac{\ln(1+x)}{e^x-1}$ b) $DL_2(0)$ de $\frac{\arctan x}{\tan x}$ c) $DL_2(1)$ de $\frac{x-1}{\ln x}$

Exercice 7 [00751] [correction]

Déterminer les développements limités suivants :

a) $DL_3(0)$ de $\frac{x-\sin x}{1-\cos x}$ b) $DL_2(0)$ de $\frac{\sin(x)}{\exp(x)-1}$ c) $DL_3(0)$ de $\frac{x \cosh x - \sinh x}{\cosh x - 1}$

Exercice 8 [01449] [correction]

Former le $DL_3(1)$ de $\arctan x$

Exercice 9 [01452] [correction]

Déterminer les développements limités suivants :

a) $DL_{10}(0)$ de $\int_x^{x^2} \frac{dt}{\sqrt{1+t^4}}$ b) $DL_{1000}(0)$ de $\ln\left(\sum_{k=0}^{999} \frac{x^k}{k!}\right)$.

Exercice 10 [01453] [correction]

Exprimer le développement limité à l'ordre n en 0 de $\frac{1}{\sqrt{1-x}}$ à l'aide de nombres factoriels.

Exercice 11 [01454] [correction]

Pour $\alpha = -1/2$ et $k \in \mathbb{N}$, exprimer

$$\frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}$$

à l'aide de nombres factoriels.

En déduire une expression du $DL_{2n+1}(0)$ de $\frac{1}{\sqrt{1-x^2}}$ puis du $DL_{2n+2}(0)$ de $\arcsin(x)$.

Exercice 12 [01455] [correction]

Pour $n \in \mathbb{N}$, déterminer le développement limité à l'ordre 2n+2 de $x \mapsto \frac{1}{2} \ln \frac{1+x}{1-x}$. On pourra commencer par calculer la dérivée de cette fonction.

Exercice 13 [01456] [correction]

Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^{x^2}$ admet une application réciproque définie sur \mathbb{R} et former le $DL_5(0)$ de f^{-1} .

Exercice 14 [03025] [correction]

En calculant de deux façons le développement limité à l'ordre n de $(e^x - 1)^n$, établir que pour tout $0 \le \ell \le n$

$$\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{n-k} k^{\ell}}{\ell!} = \begin{cases} 0 & \text{si } \ell < n \\ 1 & \text{si } \ell = n \end{cases}$$

Corrections

Exercice 1 : [énoncé]

a)
$$\sin(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) - \frac{\sqrt{2}}{4}(x - \frac{\pi}{4})^2 - \frac{\sqrt{2}}{12}(x - \frac{\pi}{4})^3 + o((x - \frac{\pi}{4})^3)$$

b)
$$\frac{\ln x}{x^2} = (x-1) - \frac{5}{2}(x-1)^2 + \frac{13}{3}(x-1)^3 - \frac{77}{12}(x-1)^4 + o((x-1))^4$$
.
c) $\operatorname{shxch}(2x) - \operatorname{ch}x = -1 + x - \frac{1}{2}x^2 + \frac{13}{6}x^3 - \frac{1}{24}x^4 + \frac{121}{120}x^5 + o(x^5)$.

c)
$$\operatorname{shxch}(2x) - \operatorname{ch} x = -1 + x - \frac{3}{2}x^2 + \frac{13}{6}x^3 - \frac{12}{24}x^4 + \frac{121}{120}x^5 + o(x^5)$$
.

Exercice 2 : [énoncé]

a)
$$\ln\left(\frac{x^2+1}{x+1}\right) = \ln(1+x^2) - \ln(1+x) = -x + \frac{3}{2}x^2 - \frac{1}{3}x^3 + o(x^3)$$

b)
$$\ln(1+\sin x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$
.

c)
$$\cos(\ln x) = 1 - \frac{1}{2}(x-1)^2 + \frac{1}{2}(x-1)^3 + o((x-1)^3)$$
.

Exercice 3: [énoncé]

a)
$$\ln(1 + e^x) = \ln 2 + \frac{1}{2}x + \frac{1}{8}x^2 + o(x^3)$$

b)
$$\ln(2 + \sin x) = \ln 2 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{24}x^3 + o(x^3)$$

c)
$$\sqrt{3 + \cos x} = 2 - \frac{1}{8}x^2 + o(x^3)$$

Exercice 4: [énoncé]

a)
$$e^{\sqrt{1+x}} = e + \frac{e}{2}x + \frac{e}{48}x^3 + o(x^3)$$

b)
$$\ln \left(1 + \sqrt{1+x}\right) = \ln 2 + \frac{1}{4}x - \frac{3}{32}x^2 + \frac{5}{92}x^3 + o(x^3)$$

b)
$$\ln (1 + \sqrt{1+x}) = \ln 2 + \frac{1}{4}x - \frac{3}{32}x^2 + \frac{5}{96}x^3 + o(x^3)$$

c) $\ln (3e^x + e^{-x}) = 2\ln 2 + \frac{1}{2}x + \frac{3}{8}x^2 - \frac{1}{8}x^3 + o(x^3)$

Exercice 5 : [énoncé]

a)
$$(1+x)^{1/x} = e - \frac{e}{2}x + \frac{11e}{24}x^2 + o(x^2)$$

b) $\ln(\frac{\sin x}{x}) = -\frac{1}{6}x^2 - \frac{1}{180}x^4 + o(x^4)$

b)
$$\ln\left(\frac{\sin x}{x}\right) = -\frac{1}{6}x^2 - \frac{1}{180}x^4 + o(x^4)$$

c)
$$\ln\left(\frac{\sinh x}{x}\right) = \frac{1}{6}x^2 - \frac{1}{180}x^4 + o(x^4)$$

Exercice 6 : [énoncé]

a)
$$\frac{\ln(1+x)}{e^x-1} = 1 - x + \frac{2}{3}x^2 - \frac{11}{24}x^3 + o(x^3)$$

b)
$$\frac{\arctan x}{\tan x} = 1 - \frac{2}{3}x^2 + o(x^2)$$

b)
$$\frac{\arctan x}{\tan x} = 1 - \frac{2}{3}x^2 + o(x^2)$$

c) $\frac{x-1}{\ln x} = 1 + \frac{1}{2}(x-1) - \frac{1}{12}(x-1)^2 + o((x-1)^2)$

Exercice 7 : [énoncé

a)
$$\frac{x-\sin x}{1-\cos x} = \frac{1}{3}x + \frac{1}{90}x^3 + o(x^3)$$

a)
$$\frac{x-\sin x}{1-\cos x} = \frac{1}{3}x + \frac{1}{90}x^3 + o(x^3)$$

b) $\frac{\sin x}{\exp(x)-1} = 1 - \frac{1}{2}x - \frac{1}{12}x^2 + o(x^2)$

c)
$$\frac{\operatorname{cxp}(x)}{\operatorname{ch} x - \operatorname{sh} x} = \frac{2}{3}x + \frac{1}{90}x^3 + o(x^3)$$

Exercice 8 : [énoncé]

On primitive de
$$DL_2(1)$$
 de $\frac{1}{1+x^2}$: $\arctan x = \frac{\pi}{4} + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{12}(x-1)^3 + o((x-1)^3)$.

a)
$$\frac{1}{\sqrt{1+t^4}} = 1 - \frac{1}{2}t^4 + \frac{3}{8}t^8 + o(t^9) \text{ dont } \int_0^x \frac{dt}{\sqrt{1+t^4}} = t - \frac{1}{10}t^5 + \frac{1}{24}t^9 + o(t^{10})$$

puis $\int_x^{x^2} \frac{dt}{\sqrt{1+t^4}} = \int_0^{x^2} \frac{dt}{\sqrt{1+t^4}} - \int_0^x \frac{dt}{\sqrt{1+t^4}} = -x + x^2 + \frac{1}{10}x^5 - \frac{1}{24}x^9 - \frac{1}{10}x^{10} + o(x^{10})$
b) $\ln\left(\sum_{x=0}^{1000} \frac{x^k}{x^k}\right) = \ln(e^x - \frac{x^{1000}}{x^{1000}} + o(x^{1000})) = \ln(e^x) + \ln(1 - \frac{x^{1000}}{x^{1000}}) = \ln(e^x) + \ln(1 - \frac{x^{1000}}{x^{$

b)
$$\ln\left(\sum_{k=0}^{999} \frac{x^k}{k!}\right) = \ln(e^x - \frac{x^{1000}}{1000!} + o(x^{1000})) = \ln(e^x) + \ln(1 - \frac{x^{1000}e^{-x}}{1000!} + o(x^{1000})) = x - \frac{1}{1000!}x^{1000} + o(x^{1000}).$$

Exercice 10 : [énoncé]

$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{n} {\binom{-1/2}{k}} (-x)^k + o(x^n) \text{ avec}$$

$${\binom{-1/2}{k}} = \frac{(-\frac{1}{2})(-\frac{3}{2})\cdots(-\frac{2k-1}{2})}{k!} = (-1)^k \frac{1 \cdot 3 \dots (2k-1)}{2^k k!} = (-1)^k \frac{(2k)!}{(2^k k!)^2}.$$

Au final,
$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{n} \frac{(2k)!}{(2^k k!)^2} x^k + o(x^n)$$

Exercice 11 : [énoncé]

On a

$$\frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} = \frac{(-1)^k \frac{1}{2} \frac{3}{2} \cdots \frac{2k-1}{2}}{k!} = \frac{(-1)^k (2k)!}{2^{2k} (k!)^2}$$

Donc

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k} (k!)^2} x^{2k} + o(x^{2n+1})$$

puis

$$\arcsin x = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(2k+1)(k!)^2} x^{2k+1} + o(x^{2n+2})$$

Exercice 12 : [énoncé]

$$\left(\frac{1}{2}\ln\frac{1+x}{1-x}\right)' = \frac{1}{1-x^2} \text{ et } \frac{1}{1-x^2} = 1 + x^2 + x^4 + \dots + x^{2n} + o(x^{2n+1}).$$

$$\text{Donc } \frac{1}{2}\ln\frac{1+x}{1-x} = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + \frac{1}{2n+1}x^{2n+1} + o(x^{2n+2}).$$

Exercice 13 : [énoncé]

$$f$$
 est \mathcal{C}^{∞} sur \mathbb{R} et $f'(x) = (1 + 2x^2)e^{x^2} > 0$, de plus $\lim_{t \to \infty} f = +\infty$, $\lim_{t \to \infty} f = -\infty$.

Donc f réalise une bijection de \mathbb{R} vers \mathbb{R} et f^{-1} est \mathcal{C}^{∞} sur \mathbb{R} .

En particulier f^{-1} admet une $DL_5(0)$, de plus comme f est impaire, f^{-1} l'est aussi et le $DL_5(0)$ de f^{-1} est de la forme : $f^{-1}(x) = ax + bx^3 + cx^5 + o(x^5)$.

En réalisant un $DL_5(0)$ de $f^{-1}(f(x))$ on obtient :

$$f^{-1}(f(x)) = ax + (a+b)x^3 + (\frac{1}{2}a+3b+c)x^5 + o(x^5).$$

Or $f^{-1}(f(x)) = x$, donc: $a = 1, b = -1$ et $c = \frac{5}{2}$.

Exercice 14 : [énoncé]

D'une part $e^x - 1 = x + o(x)$ donne

$$\left(e^x - 1\right)^n = x^n + o(x^n)$$

D'autre part

$$(e^x - 1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} e^{kx}$$

or

$$e^{kx} = \sum_{\ell=0}^{n} \frac{k^{\ell}}{\ell!} x^{\ell} + o(x^n)$$

donc, en réordonnant les sommes

$$(e^x - 1)^n = \sum_{\ell=0}^n \sum_{k=0}^n \binom{n}{k} \frac{(-1)^{n-k} k^{\ell}}{\ell!} x^{\ell}$$

L'unicité des développements limités entraîne la relation proposée.