Observe le tableau ci-dessous et écris sur ta feuille de copie, le numéro de l'affirmation suivi de V si elle est vraie ou suivi de F si elle est fausse. Exemple 5-F.

Numéro affirmation	Affirmation
And the second control of the second of the	Deux vecteurs sont non colinéaires si et seulement si leur déterminant n'est pas nul.
2	The state of the s
3	Lorsqu'on multiplie chaque membre d'une inégante par une la facilité de sens contraire.
4	négatif, on obtient une nouvelle inégatife de seus contrains le même ordre que leurs carrés. Des nombres réels strictement négatifs sont rangés dans le même ordre que leurs carrés.

EXERCICE 2: (2 points)

Pour chacun des énoncés, trois réponses sont proposées. Une seule est exacte. Ecris sur ta feuille de copie, le numéro de l'énoncé suivi de la lettre de la bonne réponse. Exemple 10-A.

copie, le numéro de l'énoncé suivi de la lettre de la bonne reponse.			Réponses proposées	
		A	$d\acute{e}t(\overrightarrow{u};\overrightarrow{v}) = -5$	
1	Soit $(\vec{t}; \vec{j})$ une base du plan vectoriel \vec{v} et les vecteurs $\vec{u} = 2\vec{t} - \vec{j}$ et $\vec{v} = \vec{t} - 2\vec{j}$. alors	В	$d\acute{e}t(\overrightarrow{u};\overrightarrow{v})=0$	
		C	$d\acute{e}t(\overrightarrow{u};\overrightarrow{v}) = -3$	
2	Soit ABC un triangle rectangle et isocèle en B, et I le milieu de [BC]. Alors :	A	$\ \overline{AC}\ = 2\ \overline{AI}\ $	
		В	$\ \overrightarrow{AI}\ = \frac{\sqrt{5}}{2}AB$	
		C	$\ \overrightarrow{AI}\ = \sqrt{5}AB$	
3	On pose $x = 7(3 - \pi)$ et $y = 5\sqrt{2}(3 - \pi)$. Alors	A	x < y	
		В	x > y	
		C	$x^2 \leq y^2$	
4	On pose $s = \frac{\pi}{5-\sqrt{20}}$ et $t = \frac{3.14}{5-3\sqrt{2}}$. Alors	A	s < t	
		В	s > t	
		C	s = t	

EXERCICE 3: (4 points)

A/ soit
$$M = \sqrt{5 - 2\sqrt{3}} - \sqrt{5 + 2\sqrt{3}}$$

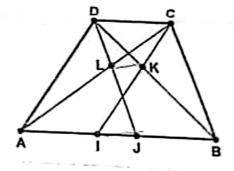
- 1) Détermine le signe de M
- 2) Montre que $M^2 = 10 2\sqrt{13}$
- 3) Déduis-en la valeur exacte de M

B/a) Calcule
$$F = \frac{3\sqrt{5} + \sqrt{20}}{\sqrt{45}(2 - \frac{5}{6})}$$

b) a et b étant deux nombres réels tels que $ab \neq -1$

Montre que :
$$\frac{a - \frac{a - b}{1 + ab}}{1 + \frac{a(a - b)}{1 + ab}} = b$$

EXERCICE 4: (7 points)


Dans un repère orthonormé (0,i,j), on donne les points A(2;7); B(4;1) et C(-5;2). L'unité de mesure est le centimètre.

- 1. Fals une figure que tu complèteras au fur et à mesure.
- 2. a) Détermine par le calcul les coordonnées des vecteurs $\overrightarrow{AB}, \overrightarrow{BC}$ et \overrightarrow{AC} .
 - b) Déduis-en les longueurs AB, BC et AC.
- 3. a) Donne un programme de construction en deux étapes, utilisant l'égalité de CHASLES et la propriété fondamentale, du point M vérifiant $\overline{AM} = \frac{1}{2}\overline{AB} + \frac{1}{3}\overline{BC}$. Construis ensuite le point M et donne par lecture graphique, les coordonnées du point M.
 - b) Détermine par le calcul les coordonnées du point M.
- 4. La droite (AM) coupe (BC) en un point N. Détermine le couple de coordonnées d N.

EXERCICE 5: (Situation complexe: 5 points)

Boudaoud, élève en classe de seconde C, découvre sur un site éducatif sur le Net la figure ci-contre avec les informations suivantes :

- ABCD est un trapèze de bases [AB] et [CD] tels que $AB = \frac{5}{2}CD$.
- AICD et JBCD sont des parallélogrammes ;
- K et L sont les points d'intersection respectifs des droites (BD) et (CI) d'une part et des droites (AC) et (DJ) d'autre part.

L'une de ses camarades de classe, Marissa, affirme que les rapports de distances $\frac{CK}{KI}$ et $\frac{DL}{U}$ sont égaux. A l'aide d'une production argumentée basée sur tes connaissances en mathématique, dis si Marissa a raison ou non.