Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Chapitre 3: Relations d'ordre

Dans tout ce qui suit, E désigne un ensemble quelconque.

I Généralités

A) Relations binaires

Définition:

Une relation binaire définie sur E est une propriété que chaque couple (x, y) d'éléments de E est susceptible d'avoir ou non. Si \mathcal{R} désigne une relation binaire définie sur E, on note $x\mathcal{R}y$ pour signifier que x et y sont en relation par \mathcal{R} . Ainsi, se donner une relation binaire \mathcal{R} sur E, c'est se donner la partie G de $E \times E$ constituée des couples (x, y) tels que $x\mathcal{R}y$.

Exemple:

- Sur l'ensemble \mathbb{R} des nombres réels, on connaît les relations usuelles $\leq, <, >, >, =, \dots$ (on peut aussi considérer les restrictions de ces relations à \mathbb{Q} , \mathbb{Z} , \mathbb{N} ...)
- Sur l'ensemble \mathbb{Z} des entiers relatifs, on peut penser à la relation de divisibilité $x|y\iff \exists k\in\mathbb{Z},y=kx$. On peut aussi imaginer (sur \mathbb{Z}) la relation \equiv définie par $x\equiv y\iff x-y$ est pair.
- Sur l'ensemble $\mathscr{P}(\Omega)$ des parties d'un ensemble Ω , on connaît la relation d'inclusion, on peut aussi imaginer la relation définie par : $A\delta B \iff A \cap B = \emptyset$.

B) Relations d'ordre

Définition:

Soit $\mathcal R$ une relation binaire définie sur $E.\ \mathcal R$ est une relation d'ordre lorsque :

- \mathcal{R} est réflexive, c'est-à-dire : $\forall x \in E, x\mathcal{R}x$.
- \mathcal{R} est transitive, c'est-à-dire : $\forall x \in E, \forall y \in E, \forall z \in E, (x\mathcal{R}y \text{ et } y\mathcal{R}z \implies x\mathcal{R}z).$
- \mathcal{R} est antisymétrique, c'est-à-dire : $\forall x \in E, \forall y \in E, (x\mathcal{R}y \text{ et } y\mathcal{R}x \implies x = y)$.

Exemple:

En reprenant les relations binaires précédentes,

- $\leq, \geq, =$ sont des relations d'ordre sur \mathbb{R} (et sur $\mathbb{Q}, \mathbb{Z}, \mathbb{N}$...).
- <, > n'en sont pas.
- \mid , \equiv ne sont pas des relations d'ordre sur \mathbb{Z} , mais \mid en est une sur \mathbb{N} .
- \subset est une relation d'ordre sur $\mathscr{P}(\Omega)$, mais pas δ .

C) Ordre total, ordre partiel

Soit \mathcal{R} une relation d'ordre sur E. On dit que \mathcal{R} définit un ordre total sur E lorsque deux éléments de E sont toujours comparables pour \mathcal{R} , c'est-à-dire : $\forall x \in E, \forall y \in E, (x\mathcal{R}y \text{ ou } y\mathcal{R}x)$.

Dans le cas contraire, on parle d'ordre partiel.

Exemple:

- \leq définit un ordre total sur \mathbb{R} (et sur \mathbb{Q} , \mathbb{Z} , \mathbb{N} ...).
- | définit un ordre partiel sur \mathbb{N} .
- \subset définit un ordre partiel sur $\mathscr{P}(\Omega)$.

II Vocabulaire dans un ensemble ordonné

Dans tout ce paragraphe, \leq désigne une relation d'ordre quelconque sur E.

A) Maximum, minimum

Proposition, définition:

Soit A une partie de E. S'il existe un élément a de A tel que $\forall x \in A, x \leq a$, alors il n'en existe qu'un seul, et on l'appelle le maximum de A (ou le plus grand élément de A), noté $\max(A)$. La définition est analogue pour le minimum (ou plus petit élément)...

Attention, il n'y a pas nécessairement existence!

Exemple:

- Pour la relation usuelle

 dans R,]0, 1[et N n'ont pas de maximum.
- Pour la relation de divisibilité dans $\mathbb{N}, \{1, 2, \dots, 10\}$ non plus.

B) Majorants, minorants

Définition:

Soit A une partie de E, et soit $z \in E$. On dit que z est un majorant de A (dans E) lorsque $\forall x \in A, x \leq z$. La définition est analogue pour le minorant.

Attention, il n'y a pas toujours existence, ni unicité! D'ailleurs, si z majore A, alors tout élément z' de E tel que $z \le z'$ majore aussi A.

Remarque:

On a l'équivalence : $a = \max(A) \iff a \in A \text{ et } a \text{ majore } A.$

Une partie A est dite majorée (respectivement minorée) lorsqu'elle admet au moins un majorant (respectivement minorant), et enfin est dite bornée lorsqu'elle est à la fois majorée et minorée.

C) Borne supérieure, borne inférieure

Définition:

Soit A une partie de E. Si A est majorée, et si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A, notée $\sup(A)$.

La définition est analogue pour l'éventuelle borne inférieure : si A est minorée, et si l'ensemble des minorants de A admet un plus grand élément, celui-ci est appelé la borne inférieure de A, notée $\inf(A)$. Attention, il n'y a pas toujours existence.

Remarque:

Si A admet un maximum, alors A admet une borne supérieure, et $\sup(A) = \max(A)$, mais A peut très bien avoir une borne supérieure sans avoir de maximum.

Démonstration:

Supposons que A admette un maximum, disons a. On note S l'ensemble des majorants de A (S n'est pas vide puisqu'il contient a). Soit $b \in S$. Alors $a \le b$ puisque $a \in A$ et b est un majorant de A. Ainsi, $\forall b \in S, a \le b$. donc a est le minimum de S. Donc a est la borne supérieure de A.

D) Notations

Notation:

- Soit $f: D \to E$, où D est un ensemble quelconque. (E est toujours ordonné par \leq). Si l'ensemble image $f(D) = \{f(x), x \in D\}$ admet une borne supérieure, on l'appelle la borne supérieure de f et on la note $\sup(f)$ ou $\sup_{x \in D} f(x)$.
- Soit $(a_i)_{i\in I}$ une famille d'éléments de E indexée par un ensemble I quelconque. Si l'ensemble $\{a_i, i\in I\}$ admet une borne supérieure, on la note $\sup_{i\in I} a_i$.
- Les notations sont analogues pour les éventuels max, min, inf.

E) Applications croissantes, décroissantes etc.

Ici, on considère deux ensembles ordonnés (E, \leq) et (F, \lhd) .

Définition:

Soit $f: E \to F$.

- f est croissante lorsque $\forall x \in E, \forall x' \in E, (x \leq x' \implies f(x) \leq f(x')).$
- f est décroissante lorsque $\forall x \in E, \forall x' \in E, (x \le x' \implies f(x') \le f(x)).$

Et, en notant x < x' pour « $x \le x'$ et $x \ne x'$ », $y \triangleleft y'$ pour « $y \unlhd y'$ et $y \ne y'$ » :

- f est strictement croissante lorsque $\forall x \in E, \forall x' \in E, (x < x' \implies f(x) \triangleleft f(x')).$
- f est strictement décroissante lorsque $\forall x \in E, \forall x' \in E, (x < x' \implies f(x') < f(x)).$