La classification qualitative des couples oxydants réducteurs

Niveau: 12 Durée 1 h

Pré requis : - identification des ions positifs

- connaissance de la réaction d'oxydoréduction

Objectifs: connaissances:

- comparaison des forces des oxydants et des forces des réducteurs

classification qualitative des couples oxydants-réducteurs

matériels : des béchers, des tubes à essai, des pipettes.

Produits : Solutions de CuSO₄, AgNO₃, des clous, du fil ou des plaques de cuivre **Mots clés :** oxydant, réducteur, couple oxydant réducteur, demi éaquation électronique,

oxydation d'un métal, réduction des ions métalliques, pouvoir oxydant,

pouvoir réducteur

Déroulement:

Activités du professeur

1 Les couples oxydant/réducteur

1.1 réaction entre le fer et l'ion Cu²⁺

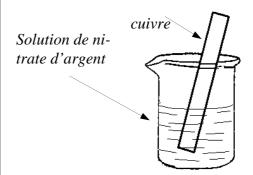
cf leçon l'oxydoréduction, fiche précédente)

<u>Il faut retrouver</u> quel est l'oxydant et quel est le réducteur.

1.2 réaction entre le cuivre et la solution de nitrate d'argent :

envoyer un élève faire l'expérience :

?


Qu'observez-vous sur la plaque de cuivre plongée dans la solution ?

Activités des élèves

Les élèves retrouvent l'équation de la réaction :

$$\begin{array}{cccc} Cu^{2+} & + & Fe & \longrightarrow & Cu + & Fe^{2+} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

l'élève plonge la plaque de cuivre dans le nitrate d'argent

un dépôt blanc et brillant de métal argent

Le professeur demande d'écrire les demi équations électroniques qui concernent l'élément cuivre dans chacune des réactions

le professeur interprète: deux demi réactions qui peuvent se résumer en une seule :

$$Cu^{2+} + 2e^{-} \longleftrightarrow Cu$$

tantôt, c'est Cu²⁺ qui joue le rôle d'oxydant,

tantôt c'est Cu qui joue le rôle de réducteur.

Cu²⁺et Cu sont les deux termes d'un couple oxydant /réducteur noté Cu²⁺/Cu

1.4 généralisation :

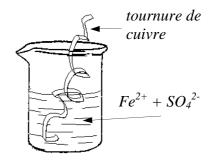
Il est toujours possible de passer chimiquement de M à Mⁿ⁺ par oxydation du métal de à M par réduction de l'ion métallique

 $\operatorname{Mn}^{n+} / \operatorname{M}$ est appelé couple oxydant réducteur

2 Classification qualitative des métaux pouvoir oxydant d'un ion

comparaison de Cu²⁺/Cu avec Fe²⁺/Fe Le professeur demande à un élève d'aller faire l'expérience :

y a-t-il une réaction entre la tournure de cuivre et la solution de sulfate de fer ? Est ce que Fe ²⁺ peut oxyder Cu


Le professeur explique : On constate que Cu^{2+} peut oxyder Fe mais Fe^{2+} ne peut pas oxyder Cu

On dit que Cu²⁺ est un oxydant plus fort que l'ion Fe²⁺

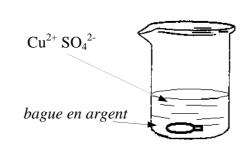
première réaction : $Cu^{2+} + 2e^{-} \longrightarrow Cu$ où Cu^{2+} est l'oxydant

 $Cu \longrightarrow Cu^{2+} + 2e^{-}$

où Cu est le réducteur

Non, on ne voit pas de dépôt gris de fer sur le cuivre rouge non

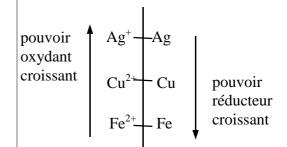
- Cu²⁺ oxyde le fer, mais Fe²⁺ ne peut pas oxyder le cuivre : on dit que le pouvoir oxydant de Cu²⁺ est supérieur à celui de l'ion Fe²⁺
- Le fer réduit Cu²⁺ mais le cuivre ne peut pas réduire Fe²⁺ : on dit que le pouvoir réducteur de Fe est supérieur à celui de Cu


deuxième expérience : l'argent dans la solution de Cu²⁺ So₄²⁻

Pour la deuxième expérience, est-ce que vous observez quelque chose ?

Alors, est-ce que Cu²⁺ peut oxyder Ag Qu'est-ce que vous pouvez conclure à partir de cette expérience des pouvoirs oxydants de Ag⁺ et Cu²⁺ ?

Or vous avez vu que Ag⁺est un oxydant plus fort que Cu²⁺ Cu²⁺ est un oxydant plus fort que Fe2+

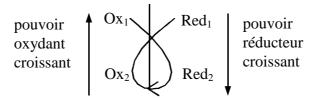

Le professeur trace une droite

non non

Ag⁺ a un pouvoir oxydant plus grand que Cu²⁺

Cu²⁺ est un réducteur plus fort que Ag

Remarque 1


Dans la réaction entre Cu²⁺ et Fe, on voit que Cu²⁺ oxyde Fe, mais que Fe²⁺ ne peut pas oxyder Cu:

Nous en avons déduit que Cu²⁺ est un oxydant plus fort que Fe²⁺ et inversement, que Cu est un réducteur plus faible que Fe

On constate donc qu'à l'oxydant le plus fort, correspond le réducteur le plus faible

Remarque 2

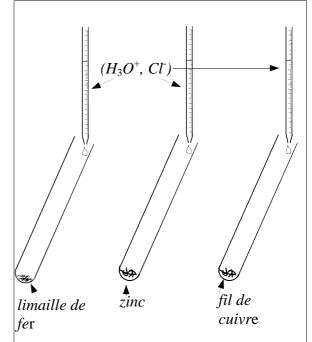
Une réaction d'oxydo réductiofait toujours intervenir deux couples: Ox_1/Red_1 et Ox_2/Red_2 C'est l'oxydant le plus fort qui réagit avec le réducteur le plus fort pour donner l'oxydant le plus faible et le réducteur le plus faibleselon le schéma suivant :

3 la place du couple H₃O⁺/H₂

Le professeur demande à un élève d'aller réaliser l'expérience :

Qu'observez-vous?

quelques minutes après, le professeur demande à l'élève d'allumer une allumette et de l'approcher de l'ouverture du tube tout en enlevant son pouce qu'entendez-vous ?



Quel est ce gaz ?

Le professeur demande à l'élève de prendre la solution restante et d'y ajouter de la solution de soude :

Qu'est-ce que vous observez ?

Ecrivez les demi réactions électroniques et l'équation bilan de la réaction


pas de réaction

Première expérience:

l'élève met de la limaille de fer dans le tube à essai et il y verse de la solution d'acide chlorhydrique concentré (); il bouche le tube.

On voit qu'il se produit un dégagement gazeux qui devient de plus en plus important

On entend une faible détonation. (les élèves peuvent répéter plusieurs fois cette expérience)

c'est de l'hydrogène

il se forme un précipité vert d'hydroxyde de fer(II) $Fe(OH)_2$

Fe
$$\longrightarrow$$
 Fe²⁺ + 2e⁻

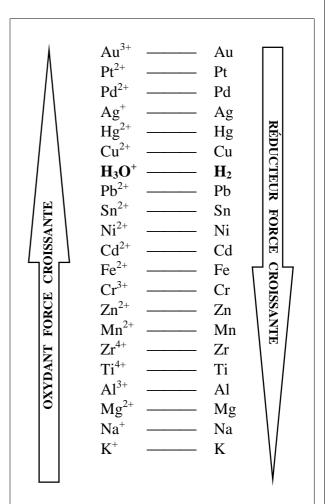
$$2H_3O^+ + 2e^- \longrightarrow H_2 + 2H_2O$$
Fe +2H₃O⁺ \longrightarrow Fe²⁺ + 2H₂O +H₂

Comparez le pouvoir oxydant de H_3O^+ et Fe^{2+} et Zn^{2+} ainsi que le pouvoir réducteur de H_2 , Fe et Zn

Comparez le pouvoir oxydant de H_3O^+ et Cu^{2+}

 H_3O^+ est un oxydant plus fort que Fe^{2+} et Zn^{2+}

H₂ est un réducteur plus faible que Fe et Zn


H₃O⁺ est un oxydant plus faible que Cu²⁺ H₂ est un réducteur plus fort que Cu

Conclusion

Certains métaux peuvent réagir avec la solution d'acide chlorhydrique en dégageant de l'hydrogène ; cette réaction est due à l'ion H_3O^+ de la solution d'acide et l'ion Cl– ne participe pas à la réaction : il est « l'ion spectateur ».

Les expériences précédentes montrent que l'ion H_3O^+ est un oxydant plus fort que les ions Fe^{2+} et Zn^{2+} mais plus faible que l'ion Cu^{2+} .

après ces expériences, on peut placer le couple : H_3O^+/H_2 par rapport aux autres couples :

le professeur demande aux élèves de nettoyer et de ranger

les élèves nettoient et rangent

EXERCICES

1	_	-
١	1	
	_	

- -a- Ecrire l'équation bilan entre les ions Au3+ et le plomb Pb. Cette réaction permet d'obtenir de l'or métal
- -b- Dans cette réaction, quel est l'oxydant, quel est le réducteur ?

Quel est le corps qui s'oxyde, quel est celui qui se réduit?

-c- Complétez la phrase

Cette réaction est une oxydation de par

Cette réaction est une réduction de par

Equilibrer les équations bilans suivantes :

$$-a- Hg^{2+} + Cu \longrightarrow Hg + Cu^{2+}$$

-b- Fe + Ag⁺
$$\longrightarrow$$
 Fe²⁺ + Ag
-c- Al + Ni²⁺ \longrightarrow Al³⁺ + Ni

$$-c- Al + Ni^{2+} \longrightarrow Al^{3+} + Ni$$

$$-d- Cd^{2+} + Zn \longrightarrow Cd + Zn^{2+}$$

-f-
$$Hg + Au^{3+} \longrightarrow Hg^{2+} + Au$$

-g-
$$Co^{3+} + Co \longrightarrow Co^{2+}$$

On trempe une lame de nickel dans une solution de sulfate de fer(II). Il ne se produit aucune réaction.

Qu'en déduisez-vous ?

On donne le couple oxydant réducteur du nickel : Ni²⁺/Ni

On trempe une lame de plomb dans une solution de nitrate d'argent. Il se produit une réaction d'oxydo-réduction:

- Ecrire les deux demi-réactions électronique et l'équation bilan de la réaction
- En déduire quel est l'oxydant le plus fort et le réducteur le plus fort .

On prépare un demi litre d'une solution dont la concentration en ions cuivre(II) est $[Cu^{2+}] = 1.00.10^{-3} \text{ mol.L}^{-1}$

- -1- quelle masse m₁ de sulfate de cuivre anhydre CuSO₄ faut-il peser ?
- -2- Sachant que le métal fer est oxydé en ion fer(II) par l'ion cuivre(II), quelle masse m₂ de fer peut disparaître au contact de cette solution?

On dissout m g de nitrate d'argent AgNO₃ pur et sec dans un litre d'eau.

On effectue un prélèvement de 50 mL de la solution obtenue dans laquelle on ajoute de la poudre de zinc en excès.

Ecrire l'équation bilan de la réaction qui s'effectue.

Sachant que la masse d'argent libérée est de 0,32 g, calculez la valeur de m

masses atomiques molaires en g mol-1:

N: 14 ; O: 16 ; Zn: 65,4 ; Ag: 108

<u>(1</u>

Réponses:

-a- Equation bilan :

$$\begin{array}{ccccc} Au^{3+} + Pb & \longrightarrow Au + Pb^{2+} \\ (Au^{3+} + 3e^{-} & \longrightarrow Au) & \times 2 \\ (& Pb & \longrightarrow Pb^{2+} + 2e^{-}) & \times 3 \\ 2Au^{3+} + 3Pb & \longrightarrow 2Au + 3Pb^{2+} \end{array}$$

-b- Au3+ est l'oxydant

Pb est le réducteur

Pb s'oxyde

Au3+ se réduit

Cette réaction est une oxydation de Pb par

Au3-

Cette réaction est une réduction de Au3+ par Pb

(2)

Equilibrons les réactions :

$$-a- Hg^{2+} + Cu \longrightarrow Hg + Cu^{2+}$$

$$Hg^{2+} + 2e^{-} \longrightarrow Hg$$

$$Cu \longrightarrow Cu^{2+} + 2e^{-}$$

$$Hg^{2+} + Cu \longrightarrow Hg + Cu^{2+}$$

$$\begin{array}{cccccc} \text{-b-} & Fe + Ag^{+} & \longrightarrow & Fe^{2+} + Ag \\ & Fe & \longrightarrow & Fe^{2+} + 2e^{-} \\ & (Ag^{+} + e^{-} & \longrightarrow & Ag^{-}) \times 2 \\ \hline & Fe + 2 Ag^{+} & \longrightarrow & Fe^{2+} + 2Ag \end{array}$$

-c- Al + Ni²⁺
$$\longrightarrow$$
 Al³⁺ + Ni
(Al \longrightarrow Al³⁺ + 3e⁻)×2
(Ni²⁺ + 2e⁻ \longrightarrow Ni)×3
 $2Al + 3Ni^{2+} \longrightarrow 2Al^{3+} + 3Ni$

-f- Hg +Au³⁺
$$\longrightarrow$$
 Hg²⁺ + Au
(Hg \longrightarrow Hg²⁺ + 2e⁻) ×3
(Au³⁺ + 3e⁻ \longrightarrow Au) ×2
 3 Hg +2Au³⁺ \longrightarrow 3Hg²⁺ + 2Au

3

Dans la solution de sulfate de fer(II), on a Fe²⁺ et SO₄²⁻

Le couple oxydant réducteur correspondant est Fe²⁺/Fe

Nous avons aussi du Nickel. Le couple oxydant réducteur est Ni²⁺/Ni

Nous avons donc deux couples oxydant réducteur : Fe^{2+}/Fe et Ni^{2+}/Ni Si Fe^{2+} ne peut pas oxyder Ni, ça veut dire que Fe^{2+} est un oxydant plus faible que Ni^{2+} ou que Fe est un réducteur plus fort que Ni

1- Dans la solution de nitrate d'argent, il y a des ions et

Quand il se produit une réaction d'oxydoréduction, on a les demi réactions électroni-

$$Ag^{+} + e^{-} \longrightarrow Ag (\times 2)$$
 la réduction
 $Pb \longrightarrow Pb^{2+} + 2e^{-}$ l'oxydation
 $2Ag^{+} + Pb \longrightarrow 2Ag + Pb^{2+}$ équation bilan

-2- Ag⁺ est l'oxydant ; Pb est le réducteur on a deux couples d'oxydant- réducteur Ag⁺/Ag et Pb²⁺/Pb

 1° solution de sulfate de cuivre : $[Cu^{2+}] = 1,00.10^{-3} \text{ mol } L^{-1}$

 $\begin{array}{c} v = 0{,}500 \text{ L} \\ \text{\'equation de dissolution}: CuSO_{4_{(solide)}} \xrightarrow{H_2O} Cu_{aq}^{2+} + SO_{aq}^{2-} \end{array}$

d'où
$$C_{\text{CuSO}_4} = C = \left[\text{Cu}^{2+}\right]$$

$$C = \frac{n_1}{v} \quad \text{mol} \quad n_1 = \frac{m_1}{M_1} \quad \text{g.mol}^{-1}$$

$$\text{g.mol}^{-1}$$

*n*₁ : quantité de matière de CuSO₄ dissoute

 M_1 : masse molaire de CuSO₄: $M_1 = 64+32+4\times16=160 \text{ g.mol}^{-1}$

d'où $m_1 = n_1.M_1 = cvM_1 = [Cu^{2+}].v.M_1$

application numérique : $m_1 = 1,00010^{-3} \times 0,500 \times 160 = 80.10^{-3} \text{ g} = 80 \text{ mg}$

Fe
$$\longrightarrow$$
 Fe²⁺ + 2e⁻ (oxydation)
Cu²⁺ + 2e⁻ \longrightarrow Cu (réduction)
Fe + Cu²⁺ \longrightarrow Fe²⁺ + Cu (oxydo réduction)
Imol Imol n_2 n_1
la réaction se fait mole à mole , donc $n_2 = n_1$
où n_2 = quantité de matière de fer qui disparaît $m_2 = n_2$.M₂
 $m_2 = n_1$.M₂ = [Cu²⁺].v.M₂
g mol.L⁻¹ L g.mol⁻¹
application numérique : $m_2 = 1,00.10^{-3} \times 0,500 \times 56 = 28 \times 10^{-3} \text{g} = 28 \text{ mg}$

Remarque: il est intéressant de faire un raisonnement littéral et ensuite une équation aux unités pour vérifier l'homogénéité de la relation et après seulement, l'application numérique

 1°) Pour écrire l'équation bilan de la réaction entre le zinc, Zn et la solution de nitrate d'argent Ag++NO3-, il faut écrire d'abord les demi équations électroniques

$$\begin{array}{ccc} (\operatorname{Ag^{+}+e^{-}} & \longrightarrow & \operatorname{Ag}) \times 2 \\ \operatorname{Zn} & \longrightarrow & \operatorname{Zn^{2+}} + 2e^{-} \\ \hline 2\operatorname{Ag^{+}} + \operatorname{Zn} & \longrightarrow & 2\operatorname{Ag} + \operatorname{Zn^{2+}} \end{array}$$

On a multiplié la première équation pour exprimer le transfert d'électrons: il faut le même nombre d'électrons captés et libérés.

 2°) La quantité de matière en argent libéré est égale à la quantité de matière en ions Ag^{+} , $n_{Ag^{+}}$ qui réagit, car c'est le zinc qui est en excès :

$$n_{\mathrm{Ag}^{+}} = n_{\mathrm{Ag}} = \frac{m_{\mathrm{Ag}}}{\mathrm{M}_{\mathrm{Ag}}}$$
 m_{Ag} : masse d'argent formé $m_{\mathrm{Ag}} = 0.32 \,\mathrm{g}$
 $m_{\mathrm{Ag}} : \mathrm{masse} \,\mathrm{molaire} \,\mathrm{de} \,\mathrm{l'argent} \,$; $m_{\mathrm{Ag}} = 108 \,\mathrm{g.mol^{-1}}$

$$m_{\mathrm{Ag}} = [\mathrm{Ag}^{+}] \cdot v$$

$$m_{\mathrm{Ag}} = \frac{m_{\mathrm{Ag}}}{\mathrm{M}_{\mathrm{Ag}}} \times \frac{1}{v}$$

$$[Ag^{+}] = \frac{0.32}{108} \times \frac{1}{50.10^{-3}} = 5.93.10^{-3} \text{mol.L}^{-1}$$

on en déduit la masse m de nitrate d'argent dissout dans un litre :

l'équation de dissolution du nitrate d'argent est

1 mole de nitrate d'argent dissout donne 1 mole de Ag⁺ en solution

$$m = m_{\text{AgNO}_3} = [\text{Ag}^+] \cdot \text{M}_{\text{AgNO}_3} \quad \text{M}_{\text{AgNO}_3} \text{ en g.L}^{-1}$$

$$m_{\text{AgNO}_3} = \frac{m_{\text{Ag}}}{\text{M}_{\text{Ag}}} \cdot \frac{1}{v} \cdot \text{M}_{\text{AgNO}_3} \quad \text{Mag en g.mol}^{-1}$$

$$m_{\text{AgNO}_3} = \frac{m_{\text{Ag}}}{\text{M}_{\text{Ag}}} \cdot \frac{1}{v} \cdot \text{M}_{\text{AgNO}_3} \quad \text{v en L}$$

application numérique : $m_{\text{AgNO}} = \frac{0.3}{2}$

$$m_{\text{AgNO}_3} = \frac{0.32}{108} \times \frac{1}{50.10^{-3}} \cdot 170 \approx 10.1 \text{ g}$$