Problems

Exercise 1

Let AB and CD be two perpendicular diameters of a circle with centre O . Consider a point M on the diameter $A B$, different from A and B. The line $C M$ cuts the circle again at N . The tangent at N to the circle and the perpendicular at M to AM intersect at P . Show that $\mathrm{OP}=\mathrm{CM}$.

Exercise 2

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-zero integers. It is known that the sums $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ and $\frac{a}{c}+\frac{c}{b}+\frac{b}{a}$ are integers. Find these sums.

Exercise 3

For a real number x let $[\mathrm{x}]$ be the greatest integer less than or equal to x and let $<\mathrm{x}>=\mathrm{x}-[\mathrm{x}]$.
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct real numbers, prove that
$\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-a)(b-c)}+\frac{c^{3}}{(c-a)(c-b)}$ is an integer if and only if $\langle\mathrm{a}\rangle+\langle\mathrm{b}\rangle+\langle\mathrm{c}\rangle$ is an integer.

Exercise 4

For every positive integer k let $\mathrm{a}(\mathrm{k})$ be the largest integer such that $2^{\mathrm{a}(\mathrm{k})}$ divides k . For every positive integer n determine $a(1)+a(2)+a(3)+\ldots+a\left(2^{n}\right)$.

Exercise 5

In how many ways can the integers from 1 to 2006 be divided into three non-empty disjoint sets so that none of these sets contains a pair of consecutive integers?

Exercise 6

Let ABC be a right angled triangle at A . Denote D the foot of the altitude through A and $\mathrm{O}_{1}, \mathrm{O}_{2}$ the incentres of triangles ADB and ADC . The circle with centre A and radius $A D$ cuts $A B$ in K and $A C$ in L. Show that O_{1}, O_{2}, K and L are on a line.

