1 The PAMO in Alger, Algeria: August 2005

PAMO in Alger, Algeria 2005: Day 1
Time: 4.5 hours

1. For any positive real numbers a, b and c, prove:

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqslant \frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a} \geqslant \frac{9}{a+b+c} .
$$

2. Let S be a set of integers with the property that any integer root of any nonzero polynomial with coefficients in S also belongs to S. If 0 and 1000 are elements of S, prove that -2 is also an element of S.
3. Let $A B C$ be a triangle and let P be a point on one of the sides of $A B C$. Show how to construct a line passing through P that divides triangle $A B C$ into two parts of equal area.

PAMO in Alger, Algeria 2005: Day 2 Time: 4.5 hours

4. Let $\lfloor x\rfloor$ be the greatest integer less than or equal to x and let $\{x\}=x-\lfloor x\rfloor$. Find all x satisfying $\lfloor x\rfloor .\{x\}=2005 x$.
5. Noah has to fit 8 species of animals into 4 cages of the Ark. He plans to put two species of animals in each cage. It turns out that, for each species of animal, there are at most 3 other species with which is cannot share a cage. Prove that there is a way to assign the animals to the cages such that each species shares a cage with a compatible species.
6. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that $f(a b) \geqslant f(a)+f(b)$ for all $a, b \in$ $\mathbb{Z} \backslash\{0\}$. Show that $f\left(a^{n}\right)=n f(a)$ for all $a \in \mathbb{Z} \backslash\{0\}$ and all $n \in \natural$ if and only if $f\left(a^{2}\right)=2 f(a)$ for all $a \in \mathbb{Z} \backslash\{0\}$.
