9 The PAMO in Maputo: April 2003

PAMO in Maputo 2003: Day 1 Time: 4.5 hours

- 1. Let \mathbb{N}_0 denote the set of nonnegative integers $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ Find all the functions $f: \mathbb{N}_0 \to \mathbb{N}_0$ satisfying the following three conditions:
 - (i) f(n) < f(n+1) for all $n \in \mathbb{N}_0$,
 - (ii) f(2) = 2 and
 - (iii) f(mn) = f(m)f(n)

for all $m, n \in \mathbb{N}_0$.

- 2. The circumference of a circle is arbitrarily divided into four parts. The midpoints of the arcs are connected by line segments. Show that two of these segments are perpendicular.
- 3. Does there exist a base in which number of the form 10101, 101010101, 10101010101010101, etc are all prime numbers?

PAMO in Maputo 2003: Day 2 Time: 4.5 hours

4. Let \mathbb{N}_0 denote the set of non negative integers $\mathbb{N}_0 = \{0, 1, 2, 3, ..., \}$. Does there exist a function $f \colon \mathbb{N}_0 \to \mathbb{N}_0$ such that, for all *n*:

$$f^{(2003)}(n) = 5n?$$

(Note: $f^{(2003)}$ means $f \circ f \circ f \circ \cdots \circ f$ 2003 times)

- 5. Find all positive integers $n \in \mathbb{N}$ such that 21 divides $2^{2^n} + 2^n + 1$.
- 6. Find all function $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^{2}) - f(y^{2}) = (x + y)(f(x) - f(y))$$

for all x, y in \mathbb{R} .