9 The PAMO in Maputo: April 2003

PAMO in Maputo 2003: Day 1
 Time: 4.5 hours

1. Let \mathbb{N}_{0} denote the set of nonnegative integers $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ Find all the functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ satisfying the following three conditions:
(i) $f(n)<f(n+1)$ for all $n \in \mathbb{N}_{0}$,
(ii) $f(2)=2$ and
(iii) $f(m n)=f(m) f(n)$
for all $m, n \in \mathbb{N}_{0}$.
2. The circumference of a circle is arbitrarily divided into four parts. The midpoints of the arcs are connected by line segments. Show that two of these segments are perpendicular.
3. Does there exist a base in which number of the form 10101, 101010101, 101010101010101, etc are all prime numbers?

PAMO in Maputo 2003: Day 2

Time: 4.5 hours

4. Let \mathbb{N}_{0} denote the set of non negative integers $\mathbb{N}_{0}=\{0,1,2,3, \ldots$,$\} . Does there exist a$ function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that, for all n :

$$
f^{(2003)}(n)=5 n ?
$$

(Note: $f^{(2003)}$ means $f \circ f \circ f \circ \cdots \circ f 2003$ times)
5. Find all positive integers $n \in \mathbb{N}$ such that 21 divides $2^{2^{n}}+2^{n}+1$.
6. Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}\right)-f\left(y^{2}\right)=(x+y)(f(x)-f(y))
$$

for all x, y in \mathbb{R}.

