1/2

22T 06AN0130 Durée : 2 heures

Séries : T1-T2 - Coef. 2 <u>Epreuve du 1^{er} groupe</u>

OFFICE DU BACCALAUREAT

E.mail : office@ucad.edu.sn site web :officedubac.sn

Volume molaire $Vm = 24 L.mol^{-1}$

SCIENCES PHYSIQUES

EXERCICE 1: (05 points = 10×0.5				
A. Choisir la bonne réponse. Justifier si néc				
1.1. Au démarrage, la vitesse d'un scooter pa	sse de 0 à 36 km.h ⁻¹ en 10 s.			
Son accélération moyenne est de :				
a) 3,6 m.s ⁻² b) 3,6 km.h				
1.2. Le 2-méthylpropan-2-amine est une amin	e de classe :			
	secondaire c) tertiaire			
1.3. Il y a interférence constructive en un poin	t M lorsque 2 ondes cohérentes arrivent en :			
	c) quadrature de phase en M			
1.4. La réaction de saponification est :				
	ente et réversible c) rapide et totale			
1.5. Le calcium 47 (⁴⁷ Ca) se désintègre avec				
Si la masse initiale de calcium 47 est m ₀ = 32 mg, il reste au bout de deux semaines une masse				
de calcium 47 égale à:				
a) 16 mg b)	4 mg c) 2 mg			
1.6. Les aldéhydes et les cétones sont des co	mposés organiques dont la molécule comporte le			
groupe fonctionnel :				
a) hydroxyde b) call	boxyle c) carbonyle			
1.7. On donne : $h = 6,6.10^{-34} \text{ J.s} \simeq 4.10^{-15} \text{ e}$	V.s; $c = 3.10^8 \text{ m.s}^{-1}$; $h.c = 1,24 \text{ eV.}\mu\text{m}$.			
L'énergie d'extraction d'un électron du potas				
La longueur d'onde du seuil photoélectrique	du potassium est alors environ égale à :			
a) 0,5 nm b) 0,5				
1.8. L'écriture correcte de la demi-équation él	ectronique du couple $C\ell_2/C\ell^-$ est :			
	$l^- + 2e^- \rightleftarrows C\ell_2 + 2e$ c) $2C\ell^- + e^- \rightleftarrows C\ell_2$			
B. Répondre par VRAI ou FAUX. Justifier si nécessaire.				
1.9. Le composé organique de formule semi-développée CH ₃ -CH(NH ₂)-COOH est un acide				
aminé.				
1.10. Dans le cas du mouvement uniforme d'ur	point mobile, le vecteur accélération est nul.			
EXERCICE 2: (05 points)				
On fait réagir 21 g d'oxyde de fer III (Fe ₂ O ₃) ave	c le monoxyde de carbone (CO). Il se forme du fer			
(Fe) et du dioxyde de carbone (CO ₂). L'équatior				
$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$				
On donne le nombre d'oxydation de l'élément cl	nimique oxygène: n.o(O)= - II.			
2.1. Montrer que l'oxyde de fer (Fe ₂ O ₃) est l'oxydant et le monoxyde de carbone (CO) est le				
réducteur.	(2 pts)			
2.2. A la fin de cette réaction, on obtient 11,2 g				
2.2.1. Calculer la masse restante d'oxyde de fer (Fe ₂ O ₃). (1,5 pt)				
2.2.2. Calculer le volume de dioxyde de carl	• • • • • • • • • • • • • • • • • • • •			
Masses molaires atomiques en g mol ⁻¹ · M				

22T 06AN0130 Séries : T1-T2

Epreuve du 1er groupe

EXERCICE 3: (05 points)

Données : Rayon de la Terre : R = 6380 km ; masse de la Terre : $M = 5,97.10^{24} \text{ kg}$; constante gravitationnelle : $G = 6,67.10^{-11}$ S.I.

La station orbitale (I.S.S.) de masse $m = 450.10^3$ kg, tourne autour de la Terre sur une orbite circulaire à une altitude de 274 km. Elle effectue un tour de la Terre en 1h30 min.

- Dans quel référentiel le mouvement de la station orbitale est-il décrit ? (0,5 pt)
- 3.<u>2.</u> Quel est le rayon de l'orbite de la station ?
- (1 pt) 3.3. Déterminer la vitesse du mouvement de la station dans ce référentiel. (1,5 pt)
- En fait, la station n'est soumise qu'à une seule force. Quel est le corps qui exerce cette force sur la station orbitale? (0,5 pt)
- Exprimer littéralement l'intensité F de cette force exercée sur la station orbitale. Calculer la valeur de cette force. (1,5 pt)

EXERCICE 4: (05 points)

Les physiciens ont cherché pendant longtemps à expliquer la cohésion du noyau. Le noyau atomique est un édifice remarquablement stable.

Pour comparer la stabilité de plusieurs noyaux, on compare leurs énergies de liaison par nucléon $rac{\mathrm{E}_\ell}{\cdot}$; E_ℓ est l'énergie de liaison du noyau et A son nombre de masse.

- 4.1. Définir l'énergie de liaison d'un noyau atomique.
 - (1 pt)
- **4.2.** On donne l'énergie de liaison d'un noyau de carbone 12 : $E_{\ell}(^{12}_{6}C) = 92,2 \text{ MeV}$.

Calculer l'énergie de liaison par nucléon d'un noyau de carbone 12. (1 pt)

4.3. Le tableau ci-dessous donne les énergies de liaison par nucléon de quelques noyaux.

noyau	⁴ He	⁵⁶ Fe	²³⁸ U
$\frac{E_{\ell}}{A}$ (en MeV/nucléon)	7,1	8,8	7,6

Parmi ces trois noyaux, lequel est le plus stable ? Justifier.

(1,5 pt)

4.4. Les noyaux les plus stables sont ceux qui ont une énergie de liaison par nucléon ≤ -8 MeV/nucléon. En utilisant la courbe d'Aston $(-\frac{E_l}{A} = f(A))$ donnée ci-dessous, déterminer l'intervalle des nombres de masses A pour lequel sont regroupés les noyaux les plus stables.

(1,5 pt)

