Collège crée par un collectif d'enseignants de l'Université et des Lycées

REPUBLIQUE DE COTE D'IVOIRE

BP 1484 Abidjan 22

22496049-07056738-03718818

Union-Discipline-Travail

ANNEE SCOLAIRE :		CLASSE : 1ère D1
2021-2022	DEVOIR DE	
DATE : 20-10-2022	MATHEMATIQUES	DUREE : 01H45min
COEFFICIENT : 2	N°1	PROF : M. Kassi Adou

Cette épreuve comporte deux pages numérotée page 1 sur 2, page 2 sur 2 l'usage de toute calculatrice non programmable est autorisé.

Exercice 1

2 points

Pour chaque af firmation du tableau ci – dessous indique sur ta copie le numéro de l'affirmation suivie de Vrai ou Faux. (Exemple: 3 - Vrai).

N°	Affirmations
	Soit E et Z deux ensembles finis. si $E = \{2; 3; x; y; \pi\}$ et $Z = \{3; y; \alpha; x\}$ alors Z est un sous — ensemble de E
	Solt J et M deux ensembles finis. si \overline{M} est le complémentaire de M dans J alors $M \cup \overline{M} = \{ \}$ et $J = M \cap \overline{M}$

Exercice 2

3 points

Pour chaque af firmation du tableau suivant, trois réponses sont proposées et une seule est exacte. Indique sur ta copie le numéro de l'affirmation suivi de la lettre correspondant à la bonne réponse.

Exemple: $4 - B$).		Réponses		
		4	В	С
Nº	Affirmations	[4; +∞[[-2; 2]]-2;2]
	L'ensemble des solutions de			
1	l'inéquation (I): $4-x^2 \ge 0$	-8	$x_1 = -1 \; ; \; x_2 = \frac{8}{3}$	$x_1 = 1 \; ; x_2 = \frac{-8}{3}$
	Soit $p(x) = -3x^2 - 5x + 8$	$x_1 = 1 \; ; \; x_2 = \overline{3}$	3	3
-	Λ = 121 alors		1 maines	2 racines
- 1	$Si X^2 + 2X - 8 = 0$ a pour solutions	3 racines	4 racines	
	$X_1 = -4$ ou $X_2 = 2$ alors le			
	$X_1 = -4$ ou $X_2 = 2$ atoms to polynôme $p(x) = x^4 + 2x^2 - 8$ admet:			

Exercice 3

5 points

- 1) On donne l'équation (E): $3x^2 x 10 = 0$.
 - a) Résous dans IR, l'équation(E).
 - b) Etudie le signe du polynôme $q(x) = 3x^2 x 10$.
- 2) On considère le polynôme P défini par: $p(x) = 3x^2 x \frac{2}{3}$
 - a) Justifie que $\frac{-1}{3}$ est une racine de p(x).
 - b) Déduis en la seconde racine de p(x).
 - c) Factorise p(x).

Page 1 sur 2

Exercice 4

5 points

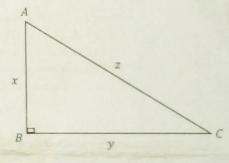
Soit A l'ensemble des nombres premiers plus petits où égaux à 11 et B l'ensemble des nombres entiers naturels multiple de 5 plus petits où égaux à 10.

- 1a) Détermine A et B en extension.
- b) Détermine par le calcul $Card(A \cup B)$.
- 2a) Calcule Card($A \times B$).
 - b) Détermine en extension le produit cartésien de A par B.
- 3) Calcule Card $(A \cap B)^{2021}$

Exercice 5

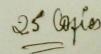
5 points

La piscine d'un professeur de Maths est un triangle ABC rectangle en B tel que : AB = x, BC = y et AC = z comme l'indique la figure ci — contre.


Le respondable de son entretien af firme que le périmètre du triangle ABC est 30m et son aire est 30m². Un élève de la 1^{ère} D du collège la Pérouse se propose avec l'aide de ses amis de classe de trouver les dimensions de la piscine.

- 1) Vérifie que $z = \sqrt{x^2 + y^2}$
- 2a) Sachant que le périmètre $\mathcal{P}=30\,\mathrm{m}$

Justifie que $x + y = 30 - \sqrt{x^2 + y^2}$


- b) Sachant que l'aire est $A = 30 \text{ m}^2$ Justifie que xy = 60
- 3) Montre que si $x + y = 30 \sqrt{x^2 + y^2}$ alors x + y = 17
- 4) On pose le système (s): $\begin{cases} x + y = 17 \\ xy = 60 \end{cases}$

Détermine les dimensions de la piscine. (sachant que x est un multiple de 2).

Cherche, trouve et jamais n'abandonne.

Page 2 sur 2

