

DEVOIR DE MATHEMATIQUES

Durée : 2h

Année scolaire 2022-2023 CE MATHS – NIVEAU 1ere D 10/11/2022

EXERCICE 1(2 points)

Ecris le numéro de chaque affirmation suivi de VRAI si l'affirmation est vraie et FAUX si elle est fausse.

N°	Affirmations				
1	Soit $E = \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9\}$, alors $\{0; 1; 2; 3; 4\}$ est un arrangement de 5 éléments de E .				
2	Pour tout nombre entier naturel n supérieur ou égal à 3, $A_n^3 = n^3 - 3n^2 + 2n$				
3	L'équation $-\frac{13}{7}(3x+8)^2 + \frac{127}{18} = 0$ a un discriminant négatif				
4	Pour tout nombre entier naturel n supérieur ou égal à 2 , $C_n^2 = C_n^{n-2}$				

EXERCICE 2(2 points)

Pour chaque énoncé, une seule réponse est juste.

Recopie sur ta copie le numéro de l'énoncé suivi de la lettre correspondant à la bonne réponse.

	-Enoncés	Réponses		
N°		A	В	С
1	Soit la parabole (P) d'équation $y = ax^2 + bx + c$ de représentation graphique ci-dessous	$a < 0$ $b > 0$ $c > 0$ $\Delta < 0$	$a < 0$ $b < 0$ $c > 0$ $\Delta > 0$	$a > 0$ $b < 0$ $c < 0$ $\Delta > 0$
2	$1 - \sqrt{3}$ et $1 + \sqrt{3}$ sont les solutions de l'équation :	$x^2 - 2x - 2 = 0$	$x^2 - 2x + 2 = 0$	$x^2 + 2x + 2 = 0$
3	Pour tout nombre entier naturel n supérieur ou égal à $2,C_n^2$ est égal :	n(n-1)	$\frac{n(n+1)}{2}$	$\frac{n(n-1)}{2}$
4	Pour tous nombres entiers naturels net p tels que $n \ge p$, A_n^p est égal :	$\frac{n!}{(n-p)!}$	$\frac{n!}{(n-p)!p!}$	$\frac{n!}{p!}$

EXERCICE 3(5 points)

Les questions 1, 2 et 3 sont indépendantes.

- 1. On considère IR l'équation (E): $-x^2 + (\sqrt{3} + \sqrt{6})x 3\sqrt{2} = 0$
- a) Vérifie que $\sqrt{3}$ est une solution de (E).
 - b) Sans calculer le discriminant, détermine l'autre solution de (E).
- 2. a) Résous dans IR l'équation (E): $2x^2 3x 5 = 0$
 - b) Déduis-en les solutions de l'équation (E): $2(x-1)^4 3(x-1)^2 5 = 0$
- 3. Résous dans IR l'inéquation $\sqrt{x(x+1)} < 2(x+1)$

EXERCICE 4(6 points)

L'effectif d'une classe de Première D est de 50 élèves dont 28 filles et 22 garçons. Parmi ces élèves, 27 ont plus de 16 ans et 38 ont moins de 18 ans.

- 1. Calcule le nombre d'élèves de cette classe dont l'âge est compris entre 16 et 18 ans.
- 2. Dans cette classe, on veut élire un comité de trois élèves : un chef de classe, un sous-chef et un responsable de la propreté. Il n'y a pas de cumul de postes.
- 2.1. Calcule le nombre de comités possibles.
- 2.2. Calcule le nombre de comités possibles dans chacun des cas suivants :
 - a) Le chef de classe est une fille.
 - b) au moins une fille est membre du comité.
 - c) Il y a plus de filles que de garçons dans le comité.
- 3. Le professeur de Mathématique décide d'interroger à l'oral par tirage au sort 5 élèves. Sara et David n'ont pas révisé. Détermine le nombre de tirages possibles pour que Sara et David n'échappent pas à l'interrogation orale.

EXERCICE 5 (5 points)

Les élèves d'un lycée souhaitent participer à la kermesse organisée par une société de la place.

Pour gagner des tee-shirts, il faut miser la somme de 10.000F avant de faire le tirage de deux cartons dans une urne contenant quatre cartons numérotés 1 et un carton numéroté 4. Le nombre de tee-shirts gagnés correspond au nombre de tirages permettant d'avoir 5 comme somme des numéros des cartons tirés. Les organisateurs de ce jeu proposent alors trois tirages au choix :

- "Tirer simultanément deux cartons de cette urne";
- "Tirer successivement sans remise deux cartons de cette urne";
- "Tirer successivement avec remise deux cartons de cette urne".

Après être informés, les élèves décident de connaître le tirage le plus avantageux.

A l'aide d'un raisonnement basé sur tes connaissances mathématiques, détermine le tirage le plus avantageux.