Enseignant: Beh Yacouba Coulibaly

DEVOIR DE CLASSE N°2 (2^{nde}C₁)

Date : **06 Novembre 2023**

Durée : 1 h 00 min

2023-2024

Ce devoir comporte trois pages numérotées $\frac{1}{3}$, $\frac{2}{3}$ et $\frac{3}{3}$.

Pour ce devoir, la qualité de la rédaction, la clarté et la précision des raisonnements prendront une part prépondérante dans l'appréciation de la copie.

EXERCICE 1 (4 points)

Fais correspondre chacune des affirmations dans le tableau ci-dessous à sa réponse juste. Exemple : 1 - D

	A	В	C
1. $\forall x \in \mathbb{R}, x ^{12} = \dots$	$x^{11} x $	x^{12}	Aucune réponse
2. $\forall x \in \mathbb{R}, x ^{13} = \dots$	x ¹³	$x^{12} x $	Aucune réponse
3. Le minimum de l'ensemble $\mathbb{Z} \cap [-\frac{5}{4}; \pi]$ est	$-\frac{5}{4}$	-1	0
4. Le maximum de l'ensemble $\mathbb{Z} \cap [-\frac{5}{4}; \pi]$ est	3,14	3	π

EXERCICE 2 (4 points)

Pour chacune des affirmations suivantes, réponds par V si elle vraie ou par F si elle est fausse.

Exemple : **5- F**

- 1. Pour tous nombres réels α et β , on a toujours $|\alpha + \beta| \le |\alpha| + |\beta|$.
- 2. Pour tout nombre réel λ , si $\lambda \in [-\pi ; \pi]$, alors $|\lambda| \le \pi$.
- 3. Pour tous nombres réels x, a et γ ($\gamma > 0$), les solutions de l'équation $|x + a| = \gamma$ sont : $-(a + \gamma)$ et γa .
- 4. Le maximum d'un ensemble lorsqu'il existe est le plus grand des majorants de cet ensemble.

EXERCICE 3 (6 points)

Sur la feuille annexe, le cercle (\mathcal{C}) de centre A est tangent aux droites (Δ) et (Γ).

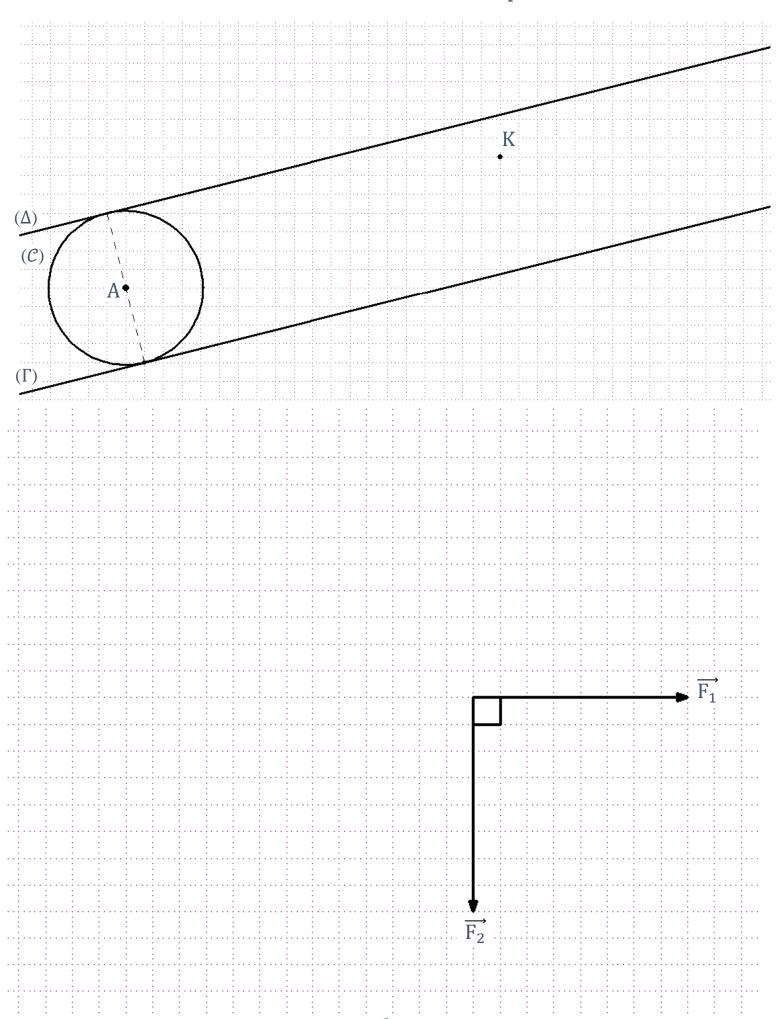
- 1. En utilisant une translation, construis un cercle (\mathcal{C}') passant par K et tangent aux droites (Δ) et (Γ).
- 2. Explique ta méthode.

EXERCICE 4 (6 points)

Lors d'une expérience, un chercheur soumet un solide à trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ tels que $\overrightarrow{F_1} \perp \overrightarrow{F_2}$ (voir feuille annexe).

Les résultats de l'expérience indiquent que :

- $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$;
- $\|\overrightarrow{\mathbf{F}_1}\| = \|\overrightarrow{\mathbf{F}_2}\| = 3\sqrt{2} \,\mathrm{N}.$


Il désigne par β l'angle déterminé par $\overrightarrow{F_1}$ et $\overrightarrow{F_3}$.

Le chercheur estime que l'expérience est réussie si $\|\overrightarrow{F_3}\| > 5$ N et $130^{\circ} < \beta < 140^{\circ}$.

Ton ami Anzoumana affirme qu'au vu de ces résultats, cette expérience est réussie.

A l'aide d'une production argumentée, vérifie cette affirmation de ton ami Anzoumana.

Feuille annexe à rendre avec la copie.

