

R. C. I. - M. E. N * Direction des Examens et Concours * R. C. I. - M. E. N

BACCALAURÉAT SESSION 2016

Coefficient : 2 Durée : 2 h

MATHÉMATIQUES

SÉRIES A2-H

Cette épreuve comporte deux (02) pages numérotées 1/2 et 2/2. Chaque candidat recevra une feuille annexe à rendre avec la copie. Tout modèle de calculatrice scientifique est autorisé. Les tables trigonométriques et logarithmiques et les règles à calculs sont autorisées.

EXERCICE 1

On considère la fonction polynôme P définie par :

$$P(x) = 2x^3 + x^2 - 5x + 2.$$

- 1- Vérifier que : $P(x) = (x + 2)(2x^2 3x + 1)$.
- 2- a) Résoudre dans \mathbb{R} l'équation : $2x^2 3x + 1 = 0$. b) En déduire tous les zéros du polynôme P.
- 3- Utiliser la question 2 pour résoudre dans \mathbb{R} l'équation $2e^{3x} + e^{2x} 5e^x + 2 = 0$.

EXERCICE 2

Dans le cadre de la réconciliation nationale, une rencontre regroupe :

- 10 représentants des chefs coutumiers ;
- 4 représentants des chefs religieux ;
- 6 membres de la société civile.

Avant le début des travaux, on choisit au hasard un bureau de séance. Ce bureau comprend : un président, un secrétaire et un porte-parole.

On suppose que tous les participants ont la même chance de faire partie du bureau et qu'aucun membre du bureau ne peut occuper plus d'un poste.

1- Justifier que le nombre de bureaux possibles est égal à 6840.

Dans la suite de l'exercice, les résultats donnés seront arrondis au millième près.

- 2- Calculer la probabilité de l'évènement A : « Aucun représentant des chefs religieux ne fait partie du bureau ».
- 3- Soit l'évènement B : « Le Président du bureau est un membre de la société civile ». Démontrer que la probabilité de B est égale à 0,300.

PROBLÈME

On considère la fonction f dérivable et définie sur l'intervalle $]0, +\infty$ [par :

$$f(x) = \frac{-x+1}{2} + \ln x.$$

- 1- a) Calculer la limite de f en 0. Interpréter graphiquement ce résultat.
 - b) On admet que, pour tout nombre réel x strictement positif, $f(x) = x(\frac{-1}{2} + \frac{1}{2x} + \frac{\ln x}{x})$. Calculer la limite de f en $+\infty$.
- 2- a) Démontrer que, pour tout nombre réel x strictement positif,

$$f'(x) = \frac{-x+2}{2x}.$$

- b) En déduire les variations de f.
- c) Établir le tableau de variation de f.
- 3- a) Vérifier que : f(1) = 0.
 - b) Démontrer que l'équation : f(x) = 0 admet une unique solution dans l'intervalle] 3,5 ; 4[. On note α cette solution.
 - c) Donner un encadrement de a par deux nombres décimaux consécutifs d'ordre 1.
- 4- Le plan est muni d'un repère orthogonal (O, I, J) d'unités : OI = 2 cm; OJ = 5 cm.
 On note (C) la courbe représentative de f.
 Sur la feuille en annexe, est tracée la droite (Δ) tangente à la courbe au point d'abscisse x = e.
 Utiliser le tableau de valeurs ci-dessous pour tracer (C) sur [0,25; 8]. On prendra α = 3,5.

x	0,25	0,5	1	2	3	4	5	6	7	8
Arrondi d'ordre 1 de $f(x)$	-1,0	-0,4	0	0,2	0,1	-0,1	-0,4	-0,7	-1,1	-1,4