

Corrigé Série A1

> Exercice1

1) Résoudre dans R l'équation $x^2 - 3x - 4 = 0$

$$\Delta = 25 \text{ donc } S = \{-1, 4\}$$

2)
$$P(x) = 2x^3 - 7x^2 - 5x + 4$$

a) Vérification de
$$P(x) = (2x-1)(x^2-3x-4)$$

b) Solution de
$$P(x) = 0$$
 donc $S = \left\{-1, \frac{1}{2}, 4\right\}$

c) Résolution de $2(\ln x)^3 - 7(\ln x)^2 - 5\ln x + 4 = 0$ posons $X = e^x$

Ensemble de validité $E_V = \left]0; +\infty\right[\text{ poser } X = \ln x \text{ on obtient } S = \left\{e^{-1}; e^{1/2}; e^4\right\}$

3-a)Résolution de $x \in R, P(x) < 0$

Tableau de signe

au de signe											
	х	$-\infty$		-1		0.5	4		+∞		
	2x-1		_	-	-	0	+ +	+			
	$x^2 - 3x - 4$		+	0	-		- 0	_			
	P(x)		_	0	+		- 0	+			

Solution de P(x) < 0 on a $S =]-\infty, -1[\cup \frac{1}{2}; 4]$

b) Résolution de $x \in R, 2e^{3x} - 7e^{2x} - 5e^x + 4 < 0$

 $E_V = R$ Poser $X = e^x$ l'inéquation devient $\begin{cases} X > 0 \\ p(X) < 0 \end{cases}$ donc $X \in \left[\ln \frac{1}{2}; 4 \right]$ par conséquent

$$S = \left[\ln \frac{1}{2}; \ln 4 \right]$$

$$Exercice 2$$

$$\begin{cases} U_0 = \frac{3}{2} \\ U_1 = 2U_n - 1 \end{cases}$$

1-a)Calculons U_1

$$U_1 = 2U_0 - 1$$

$$U_1 = 2 \times \frac{2}{3} - 1$$

$$U_1 = 2$$

b) On obtient
$$U_2 = 3$$

$$2)V_{n}=U_{n}-1$$

a)Calcule de V_0, V_1 et V_2

$$V_0 = U_0 - 1 = \frac{1}{2}, V_1 = 1 \text{ et } V_2 = 2$$

b) Démontrer que (V_n) est une suite géométrique

$$V_n = U_n - 1$$

$$V_{n} = U_{n} - 1$$

$$V_{n+1} = U_{n+1} - 1 = 2U_{n} - 1 - 1$$

$$V_{n+1} = 2U_{n} - 2$$

$$V_{n+1} = 2(U_{n} - 1) = 2V_{n}$$

 (V_n) est une suite géométrique de raison 2 et de premier terme $\frac{1}{2}$

d) Formule explicite

$$V_n = q^n V_0 = V_n = \frac{1}{2} (2)^n = 2^{n-1}$$

3)
$$U_n = V_n + 1$$
 car $V_n = U_n - 1$ donc $U_n = 1 + 2^{n-1}$

4) Déterminons le plus petit entier n tel que : $U_n > 1000000$

$$U_n > 1000000$$

$$1 + 2^{n-1} > 1000000$$

$$2^{n-1} > 999999$$

$$(n-1)\ln 2 > 999999$$

$$n > \frac{\ln\left(999999\right)}{\ln 2} + 1$$

$$n = 21$$

> Problème

Partie A

1)
$$Q(0) = 0$$
 et $Q(2) = 0$

2) *Méthode 1*:
$$Q(x) = ax(x-2)$$
 avec $a < 0$

Méthode 2 : Tableau de signe

Partie B

1)
$$D_f = R \setminus \{1\}$$

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{et} \quad \lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = +\infty \lim_{x \to \infty} f(x) = -\infty$$

$$x \to 1^ x \to 1^+$$

c)

Fomesoutra.com

$$\lim_{x \to 1^{-}} f(x) = +\infty \text{ ou } \left(\lim_{x \to 1^{+}} f(x) = -\infty\right)$$

3-a) Méthode 1 : On calcule
$$-x+4-\frac{1}{x-1}$$

Méthode 2 : On procède par division euclidienne

b)

$$\lim_{x \to -\infty} \left[f(x) - (-x+4) \right] = 0 \text{ et } \lim_{x \to +\infty} \left[f(x) - (-x+4) \right] = 0$$

c)

$$f(x)-(-x+4)$$
 a le même signe que $-(-x+4)$

$$\forall x \in]-\infty; 1[, f(x)-(-x+4)>0$$

$$\forall x \in]1; +\infty[, f(x)-(-x+4)<0$$

4-a)

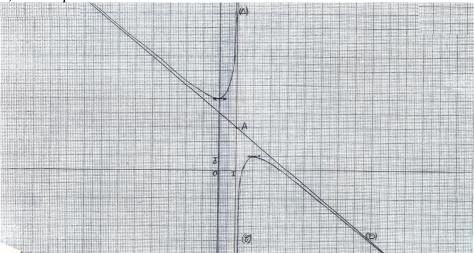
b) Pour tout $x \in R \setminus \{1\}, (x-1)^2 > 0$ on a f'(x) a le même signe que Q'(x)

$$\begin{cases} \forall x \in]-\infty; 0[\cup]2; +\infty[, f'(x) < 0 \\ \forall x \in]0; 1[\cup]1; 2[, f'(x) > 0 \\ f'(0) = f'(2) = 0 \end{cases}$$

5) Tableau de variation

X	$-\infty$	0		1	2	+∞
f'(x)	_	0	+	+	0	_
f(x)	+∞	\ 5/	+∞		# 1	∞

6) Voir repère



7) Partie C

1) Pour tout
$$x \in]1; +\infty[, H'(x) = 0 + \frac{1}{x-1} = h(x)]$$

2)
$$I = \frac{9}{8} + \ln 2$$

3) unité d'aire :1
$$cm^2$$
, $\forall x \in \left[\frac{3}{2}; 2\right]$, $f(x) \ge 0$, $A = \int_{\frac{3}{2}}^2 f(x) dx$ ua

$$A = \left(\frac{9}{2} + \ln 2\right) cm^2$$