Lycée Classique d'Abidjan - GS Thanon Namanko - GS La Farandole - GS Safak - Collège Al Gadir - Collège Les Dauphins II Plateaux - Collège MISA - Collège le Serment - GS Fred et Poppée - Collège d'Application Jean Piaget - Collège Etienne

SIMILI BACCALAUREAT

Durée : 2 heures Coefficient : 2

MATHEMATIQUES

SERIE: A2

Cette épreuve comporte une seule numérotées 1/1. <u>Le candidat recevra une feuille de papier millimétré</u>. Toute calculatrice est autorisée.

EXERCICE 1

- 1. On pose : $P(x) = 4x^3 + 4x^2 7x + 2$.
 - a) Résoudre, dans \mathbb{R} , l'équation : $4x^2 4x + 1 = 0$.
 - b) Vérifier que : $\forall x \in \mathbb{R}$, $P(x) = (x + 2)(2x 1)^2$.
- 2. a) Résoudre dans \mathbb{R} l'équation : P(x) = 0.
 - b) Résoudre dans \mathbb{R} l'équation : $2\ln x + \ln(x+1) + 2\ln 2 = \ln(7x-2)$
- 3. a) Résoudre dans \mathbb{R} l'inéquation : $P(x) \le 0$.
 - b) Résoudre dans \mathbb{R} l'inéquation : $\ln x + \ln(4x^2 + 1) \le \ln(-3x^2 + 7x 2)$
- 4. a) Résoudre dans \mathbb{R} l'inéquation : $4(\ln x)^3 7\ln x \le -2 4(\ln x)^2$
 - b) Résoudre dans \mathbb{R} l'inéquation : $4e^{2x} + 2e^{-x} \le 7 4e^{2x}$

EXERCICE 2

Un jeu consiste à lancer au hasard trois fois de suite un dé cubique équilibré à 6 faces numérotées de 1 à 6 et on note successivement le numéro de la face supérieure.

- 1. Justifier que la probabilité d'obtenir 3 numéros 2 à 2 distincts est $\frac{5}{9}$.
- 2. Justifier que la probabilité d'obtenir exactement 2 numéros identiques est $\frac{5}{12}$.
- 3. Calculer la probabilité d'obtenir 3 numéros identiques.
- 4. Calculer la probabilité d'obtenir 3 numéros dont la somme est égale à 9.

EXERCICE 3

Le plan est muni d'un repère orthonormé (O,I,J). Unité graphique : 2cm.

On considère la fonction dérivable f de \mathbb{R} vers \mathbb{R} définie par : $f(x) = \frac{2e^{X} + x - 4}{2}$.

On note (C) la courbe représentative de f dans le repère (O,I,J).

- 1. Calculer les limites de f en $-\infty$ et en $+\infty$.
- 2. Justifier que la fonction f est strictement croissante et dresser son tableau de variation.
- 3. a) Démontrer que l'équation : $x \in [0; 1]$, f(x) = 0, admet une unique solution α .
 - b) Donner un encadrement de α d'amplitude 0,1.
- 4. Justifier que : $\begin{cases} \forall x \in]-\infty; \alpha[,f(x)<0\\ \forall x \in]\alpha; +\infty[,f(x)>0 \end{cases}$. Interpréter graphiquement ce résultat.
- 5. Justifier que la tangente (T) à (C) au point d'abscisse 0 a pour équation : $y = \frac{3}{2}x 1$.
- 6. a) Démontrer que la droite (D) : $y = \frac{x}{2} 2$, est une asymptote à (C) en -\infty.
 - b) Etudier la position de (C) par rapport à la droite (D).
- 7. Tracer (D), (T) et (C) sur]- ∞ ; 1,5] dans le même repère (O;I;J).