SIMILI BACCALAUREAT Session d'avril 2012

Durée: 2 heures Coefficient: 2

MATHEMATIQUES

Fomesoura.com

SERIE: A2

Cette épreuve comporte 2 pages numérotées respectivement 1/2 et 2/2. Le candidat recevra une feuille de papier millimétré. Toute calculatrice est autorisée.

2

EXERCICE 1

On donne l'inéquation (I) : $x \in \mathbb{R}$, $\ln\left(\frac{3x+1}{x-1}\right) \le \ln\left(-\frac{2x+3}{x-3}\right)$.

- 1. a) Résoudre, dans \mathbb{R} , l'équation (E) : $x \in \mathbb{R}$, $5x^2 7x 6 = 0$;
 - b) Vérifier que : $\forall x \in \mathbb{R} \setminus \{1; 3\}, \frac{3x+1}{x-1} + \frac{2x+3}{x-3} = \frac{5x^2 7x 6}{(x-1)(x-3)}.$
 - c) Résoudre, dans \mathbb{R} , l'inéquation (I') : $x \in \mathbb{R}$, $\frac{3x+1}{x-1} \le -\frac{2x+3}{x-3}$, à l'aide des questions précédentes.
- 2. a) Trouver l'ensemble de validité de l'inéquation (1).
 - b) Résoudre, dans R, l'inéquation (I).

EXERCICE 2

(On donnera les résultats des calculs de probabilités sous forme de fractions irréductibles)
On dispose de 5 élèves de terminale du Lycée classique d'Abidjan comprenant :

- 3 élèves de la série A1 : DJORO, MOYA et RAISSA;
- 2 élèves de la série A2 : AMESSAN et KADIO.

Ces 5 filles prennent place, au hasard, dans 2 taxi-compteurs T1 et T2 de 4 places chacun pour se rendre à un concours de mathématiques, à raison d'une personne, au plus, par place. (Les conducteurs ne sont pas comptés).

On donne les événements :

- A: "DJORO est dans le taxi T1";
- B: "MOYA est devant dans le taxi T1 et AMESSAN est à l'arrière dans le taxi T2";
- C: "KADIO et RAISSA sont dans le taxi T1 et DJORO est dans le taxi T2";
- D: "Les filles de la série A1 de celles de la série A2 ne sont pas dans le même taxi".
- E: "Le taxi T1 contient, exactement, une élève".
- 1. Justifier que le nombre total de dispositions possibles des 5 élèves dans l'ensemble des 2 taxis est 6720.
- 2. a) Justifier que : $P(A) = \frac{1}{2}$.
 - b) Justifier que : $P(B) = \frac{3}{56}$.
 - c) Justifier que : $P(E) = \frac{1}{14}$.
- 3. Calculer la probabilité de chacun des événements C et D.

EXERCICE 3

Le plan est muni d'un repère orthonormé (O,I,J). Unité graphique : 1cm.

On considère la fonction f de \mathbb{R} vers \mathbb{R} définie par : $f(x) = \frac{(2x-1)^2}{4x+1}$.

On note (C) la courbe représentative de f dans le repère (O,I,J).

- 1. Vérifier que : $\forall x \in \mathbb{R} \setminus \{-\frac{1}{4}\}, f(x) = x \frac{5}{4} + \frac{9}{4(4x+1)}$.
- 2. Démontrer que le point A $\left(-\frac{1}{4}; -\frac{3}{2}\right)$ est un centre de symétrie de (C).
- 3. a) Justifier que la droite (D) : $y = x \frac{5}{4}$ est une asymptote à (C) en $+\infty$.
 - b) Justifier que (C) est en-dessous de (D) sur]- ∞ ; - $\frac{1}{4}$ [et au-dessus de (D) sur]- $\frac{1}{4}$; + ∞ [.
 - c) Vérifier que la droite (D) passe par le point A et le point $B(\frac{9}{4}; 1)$.
- 4. a) Justifier que : $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\frac{1}{4}} f(x) = +\infty$.
 - b) Donner une équation d'une asymptote (D') de (C) parallèle à la droite (OJ).
- 5. Vérifier que : $\forall x \in \mathbb{R} \setminus \{-\frac{1}{4}\}, f'(x) = \frac{8(2x-1)(x+1)}{(4x+1)^2}.$

En déduire le sens de variation de f.

- 6. a) Vérisser que : $f(\frac{1}{2}) = 0$ et f(-1) = -3
 - b) Dresser le tableau de variation de f.
- 7. Tracer les droites (D) et (D') puis construire la courbe (C) avec soin.

Correction

Lycée Classique d'Abidjan

Barème

Simili Bac A2 Avril2012

PAGE 1/3

SIMILI BACCALAUREAT Session d'avril 2012

Fomesoutra.com

Durée: 2 heures Coefficient: 2

EXERCICE 1 (5 pts)

Docs à portée de main

On donne l'inéquation (I) : $x \in \mathbb{R}$, $\ln\left(\frac{3x+1}{x-1}\right) \le \ln\left(-\frac{2x+3}{x-3}\right)$.

- 1. a) (E) : $x \in \mathbb{R}$, $5x^2 7x 6 = 0$.

 - c) (I'): $x \in \mathbb{R}$, $\frac{3x+1}{x-1} \le -\frac{2x+3}{x-3}$.
 - $(I') \Leftrightarrow S' = \left[-\frac{3}{5}; 1\right] \cup \left[2; 3\right] \dots 1pt$
- - b) $S_2 = [-\frac{3}{5}; -\frac{1}{3}[\cup[2;3[...]]]$ 0,5

EXERCICE 3 (4 pts)

(On donnera les résultats des calculs de probabilités sous forme de fractions irréductibles)

- 3 élèves de la série A1 : DJORO, MOYA et RAISSA;
- 2 élèves de la série A2 : AMESSAN et KADIO.
- 1. Soit N le nombre cherché.

N est le nombre d'arrangements de 5 parmi 8.

- $N = A_8^5 = 6720...$ 2pts
- 2. a) On fait asseoir DJORO dans le taxi T1: 4 choix possibles;

On fait asseoir les 4 autres élèves : A ⁴₇ Choix;

$$P(A) = \frac{4xA_7^4}{A_8^5} = \frac{1}{2} \dots 0,5$$

Méthode2

Les choix des 2 taxis sont équiprobables.

D'où, P(A) = $\frac{1}{2}$.

b) MOYA s'assoit devant dans le taxi T1 : 1 choix;

AMESSAN s'assoit à l'arrière dans le taxi T2 : 3 choix;

Les autres élèves s'asseyent : A_6^3 Choix.

$$P(B) = \frac{1 \times 3 \times A_6^3}{A_8^5} = \frac{3}{56} \dots 0,5$$

c) On prend une place dans le taxi T1: 4 Choix;

On prend 4 places dans le taxi T2: 1 choix;

On permute les 5 élèves sur les 5 places prises : 5! Choix.

$$P(E) = \frac{4 \times 1 \times 5!}{A_8^5} = \frac{1}{14}$$
 0,5

3. * KADIO et RAISSA s'asseyent dans le taxi T1 : A_4^2 Choix;

DJORO s'assoit dans le taxi T2: 4 choix;

Les autres élèves s'asseyent : A_5^2 Choix.

$$P(C) = \frac{A_4^2 \times 4 \times A_5^2}{A_8^5} = \frac{1}{7} \dots 0,25$$

* Les filles de la série A1 prennent un taxi : 2 choix;

Les filles de la série A1 s'asseyent : A 3 Choix;

Les filles de la série A2 s'asseyent : A_4^2 Choix.

$$P(D) = \frac{2 \times A_4^3 \times A_4^2}{A_8^5} = \frac{3}{35} \dots 0,25$$

Fomesoutra.com

main

XE	RCICE 3 (11 pts)	A romesouu ça soutra
	f est la fonction f de \mathbb{R} vers \mathbb{R} définie par : $f(x) = \frac{(2x-1)^2}{4x+1}$.	Docs à portée de n
1.	$\forall x \in \mathbb{R} \setminus \{-\frac{1}{4}\}, \ f(x) = x - \frac{5}{4} + \frac{9}{4(4x+1)}.$	2pts
	Le point A($-\frac{1}{4}$; $-\frac{3}{2}$) est un centre de symétrie de (C)	
	Pour tout x élément de $\mathbb{R} \setminus \{-\frac{1}{4}\}$, $f(x) - (x - \frac{5}{4}) = \frac{9}{4(4x + 1)}$.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	a) $\lim_{x \to +\infty} [f(x) - (x - \frac{5}{4})] = 0$	1
	b) Pour tout x élément de $\mathbb{R}\setminus\{-\frac{1}{4}\}$, $f(x)$ - $(x-\frac{5}{4})$ a le même signe que	
	* $\forall x \in]-\infty$; $\frac{1}{4}[, f(x) - (x - \frac{5}{4}) < 0$	
	D'où, Justifier que (C) est en-dessous de (D) sur]- ∞ ; - $\frac{1}{4}$ [.	
	* $\forall x \in]\frac{1}{4}; +\infty[, f(x) - (x - \frac{5}{4}) > 0$	
	D'où, Justifier que (C) est au-dessus de (D) sur $]\frac{1}{4}$; $+\infty$ [.	
	c) * $f(-\frac{1}{4}) = -\frac{3}{2}$	0.5
	* $f(\frac{9}{4}) = 1$	0.5
4.	a) * $\lim_{x \to \infty} f(x) = +\infty$	
	$ \begin{array}{ccc} x \to +\infty \\ * & \lim_{X \to -\frac{1}{4}} f(x) = +\infty \\ \end{array} $	1
	b) (D') : $x = -\frac{1}{4}$	
1.	* $\forall x \in \mathbb{R} \setminus \{-\frac{1}{4}\}, f'(x) = \frac{8(2x-1)(x+1)}{(4x+1)^2}$	
	Pour tout x élément de $\mathbb{R}\setminus\{-\frac{1}{4}\}$, $8>0$ et $(4x+1)^2>0$.	v ± 1)
	f'(x) a le même signe que $(2x - 1)(x + 1)$ * Pour tout x élément de $]-\infty$; $-1[\cup]\frac{1}{2}$; $+\infty[$, $f'(x) > 0$	
	D'où, f est strictement croissante sur]- ∞ ; -1] et sur $[\frac{1}{2}$; + ∞ [
	* Pour tout x élément de]-1; $-\frac{1}{4}$ 1[\cup]- $\frac{1}{4}$; $\frac{1}{2}$ [, f'(x) < 0	
	D'où, f est strictement décroissante sur]-1; $-\frac{1}{4}$ 1[et]- $\frac{1}{4}$; $\frac{1}{2}$ [
2.	a) $f(\frac{1}{2}) = 0$	
	f(-1) = -3	0.5
	b)	0,5
	4 2	
	$f'(x)$ + 0 - 0 + $+\infty$	
	0	

f(x)

