EXERCICES SUR LES NOMBRES COMPLEXES

Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICE 1

1°) Déterminer le module et un argument de chacun des nombres complexes

$$z_0 = 1 + i$$
; $z_1 = -1 + i\sqrt{3}$; $z_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$; $z_3 = \frac{\sqrt{6}}{2} - i\frac{\sqrt{2}}{2}$; $T = \frac{z_2}{z_3}$; $P = z_2 \times z_3$

2°) Mettre sous algébrique chacun des nombres complexes suivants

$$z_1 = (2+i)(-1+i) + (1+2i)$$
; $z_2 = (1+i\sqrt{3})^3$; $z_3 = \frac{1-3i}{3-i}$.

3°) Mettre sous forme trigonométrique chacun des nombres complexes

$$z_1 = \left(\frac{1}{2} - \frac{\sqrt{3}i}{2}\right)^{13}; \ z_2 = 1 + i\sqrt{3}; \ z_3 = \frac{\left(\sqrt{3} + i\right)^9(1 - i)}{\left(1 + i\right)^2}; \ z_4 = \sin\alpha + i(1 + \cos\alpha), \ \alpha \in [0; \pi[$$

4°) soit α un nombre réel élément de]0 ; π [. Déterminer le module et un argument de chacun des nombres complexes : $z_0 = 1 - e^{i\alpha}$; $z_1 = 1 + e^{i\alpha}$; $z_2 = \frac{z_0}{z_1}$; $z_3 = z_0 + z_1$.

EXERCICE 2

Soient A; B et M les points du plan complexe d'affixes respectives $z_A = -2 + i$; $z_B = 2 - 3i$ et z = x + iy.

- 1°) Résoudre dans \mathbb{C} l'équation $\frac{z+2-i}{z-2+3i} = \frac{1}{2}$
- 2°) Déterminez et construire l'ensemble (\mathcal{E}_0) des points M tels que $\left| \frac{z+2-i}{z-2+3i} \right| = 1$
- 3°) Déterminez et construire l'ensemble (\mathcal{E}_1) des points M tels que $MA^2 + MB^2 = 32$
- 4°) On pose K = (z+2)(z+1+i). Déterminez l'ensemble (\mathcal{E}_2) des points M tels que K soit un réel.

EXERCICE 3

- 1°) Déterminer l'ensemble des images des nombres complexes z tels que le nombre complexe A = (1-z)(1-iz) soit : a) un réel ; b) un imaginaire pur.
- 2°) Dans le plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$ on considère un point M d'affixe z = x + iy, $(z \neq -i)$ et on pose $P = \frac{z+2}{z+i}$.
 - a) Écrire P sous la forme algébrique en fonction de x et y.
 - b) Déterminer l'ensemble (E) des points M du plan tels que :
 - P soit un réel;
 - P soit imaginaire pur.
- 3°) Pour tout nombre complexe z = x + iy; on pose $Z_0 = \frac{iz + 3}{(1+i)z 1}$.
 - a) Déterminer l'ensemble (E) des points M tels que Z_0 soit un réel
 - b) Déterminer l'ensemble (F) des points M tels que Z_0 soit un imaginaire pur.
- 4°) Déterminer l'ensemble des images des complexes z tels que les images des nombres complexes : i ; z ; iz soient alignées.

Soit f l'application de \mathbb{C} dans \mathbb{C} définie par f (z) = $z^4 - \sqrt{2}z^3 - 4\sqrt{2}z - 16$

- 1°) Trouver les réels a et b tels que $f(z) = (z^2 + 4)(z^2 + az + b)$
- 2°) En déduire l'ensemble des solutions de l'équation f (z) = 0
- 3°) Placer dans le plan rapporté au repère orthonormé (o, \vec{u} ; \vec{v}) les images A; B; C; D des solutions de f (z) = 0; puis préciser que ces points appartiennent à un même cercle dont on précisera le centre et le rayon.

EXERCICE 5

1°) Résoudre dans ℂ les équations suivantes :

a)
$$z^2 + 3(1+i)z + 5i = 0$$
; b) $z^2 - (5+3i)z + 4 + 7i = 0$; c) $iz^2 - 2z - 4 - 4i = 0$

d)
$$z^2 - (1-i)z - 18 + 13i = 0$$
; e) $z^2 + (1+6i)z + (1+23i) = 0$;

f)
$$z^4 - (5 - 14i) z^2 - (24 + 10i) = 0$$
; g) $z^4 + z^2 + 1 = 0$; h) $z^6 - (1 - i)z^3 - i = 0$

h)
$$(2iz + 3 - i)^2 + (z + 1 + 5i)^2 = 0$$
; i) $z^3 = 8i$; j) $z^3 = -\sqrt{2} + i\sqrt{6}$;

k)
$$z^6 = 4\sqrt{2}(-1+i)$$
; 1) $z^4 = 2(-1+i\sqrt{3})$

 $2^\circ)$ – a) Déterminer les solutions complexes de l'équation : z 4 = 8(1– $i\sqrt{3}$) les écrire sous forme trigonométrique ;

b) Vérifiez que
$$a = \frac{\sqrt{6} + \sqrt{2}}{2} - i \frac{\sqrt{6} - \sqrt{2}}{2}$$
 est une racine quatrième de $8(1 - i \sqrt{3})$.

En déduire la forme algébrique des solutions de l'équation précédente.

EXERCICE 6

Soient les complexes $z_1 = 1 - i$ et $z_2 = \frac{\sqrt{6} - i\sqrt{2}}{2}$

- 1°) Mettre sous forme trigonométrique z_1 ; z_2 ; $\frac{z_2}{z_1}$; $z_1 \times z_2$.
- 2°) En déduire que $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$ et que $\sin \frac{\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$
- 3°) On considère l'équation d'inconnue réelle x $(\sqrt{6} + \sqrt{2})\cos x + (\sqrt{6} \sqrt{2})\sin x = 2$

Résolvez cette équation dans $\mathbb R$; puis placez les points images des solutions sur le cercle trigonométrique.

1°)Soit z et \mathbb{Z} les nombres complexes définis par : $z = \sqrt{1 + \sqrt{2}} + i\sqrt{\sqrt{2} - 1}$ et $\mathbb{Z} = z^4$ Déterminer les racines quatrièmes de \mathbb{Z} sous forme trigonométrique.

En déduire les valeurs exactes de $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

2°) Déterminer A=
$$(\frac{1}{2} + i\frac{\sqrt{3}}{2})^{1987}$$
; B = $(\frac{-1}{2} + i\frac{\sqrt{3}}{2})^{1992}$

 3°) Déterminer et construire l'ensemble (E) des points M du plan dont l'affixe z vérifie la condition proposée :

a)
$$|z+1+2i|=|z-4|$$
; b) $|z-3i|=2$; c) $|z-2+i|=1$; d) $|(1+i)z-2i|=2$.

EXERCICE 8

- 1°) a) Calculer les nombres: $a = i^4$; $b = i^5$; $c = i^6$; $d = i^7$.
 - b) En déduire les valeurs de : i^{4n} ; i^{4n+1} ; i^{4n+2} ; i^{4n+3} avec (n $\in \mathbb{N}$).

c) Calculer :
$$A = i^{60}$$
 ; $B = i^{149}$; $C = i^{134}$; $D = i^{167}$; $E = i^{156}$; $F = i^{205}$; $G = i^{94}$; $H = i^{215}$.

- 2°) a) Linéariser : $\cos^5 x$; $\sin^5 x$; $\cos^3 x$; $\sin^3 x$.
 - c) Écrire cos(4x) en fonction de sinx.
 - d) Écrire sin(4x) en fonction de sinx et cosx.
 - e) Écrire cos(3x) en fonction de cosx.
 - f) Écrire $\sin(3x)$ en fonction de $\sin x$.
 - g) En déduire une linéarisation de :

$$H = cos(4x)sinx$$
; $G = 4cos^3x - 3cosx - 4sin^3x + 3sinx$;
 $K = cos(3x)sin^2x$; $L = sin(3x)sin^2x$;

4°) Linéariser les expressions suivantes :

$$A = \cos^2 x \sin^3 x \; ; \; B = \sin 3x \cos^2 x \; ; \; C = \cos x \sin^4 x \; ; \; D = \sin^4 x + \sin^2 x \; ; \\ E = \cos^2 x \; \sin^5 x \; ; \; F = \cos^3 x \; \sin^3 x \; ; \; G = \cos^3 x \; \sin^2 x \; ; \; H = \cos^4 x + \sin^4 x.$$

Le plan est orienté et rapporté au repère orthonormé direct. Soit A et B deux points distincts d'affixes respectives **a** et **b**

- 1- construire le point M₁ dont l'affixe z₁, vérifie : $\frac{Z_1 a}{Z_1 b} = -1$
- 2- construire le point M₂ dont l'affixe z₂, vérifie : $\frac{Z_2 a}{Z_2 b} = 2$
- 3- construire le point M₃ dont l'affixe z₃, vérifie : $\frac{Z_3 a}{Z_3 b} = i$
- 4- construire le point M₄ dont l'affixe z₄, vérifie : $\frac{Z_4 a}{Z_4 b} = -i$

EXERCICE 10

- 1– Pour tout complexe z distinct de 1, on appelle A; M et M' les points d'affixes respectives 1; z; z². Déterminer les points M tels que le triangle AMM' soit équilatéral.
- 2 Déterminer les racines cubiques du nombre complexe i sous forme trigonométrique et algébrique.

En déduire la résolution dans \mathbb{C} de l'équation : $[(1-2i)z]^3 - i = 0$

3- Calculer le module et l'argument du nombre complexe $u = \frac{1}{1 + itg \theta}$.

(On discutera suivant les valeurs de θ).

EXERCICE 11

Pour chaque réel $\alpha \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, on définit l'application

$$f_{\alpha}:\mathbb{C}\to\mathbb{C}$$

$$Z \mapsto f_{\alpha}(z) = z^2 \cos^2 \alpha - 2z \cos \alpha + 1 + \sin^2 \alpha$$

Dans le plan affine euclidien muni d'un repère orthonormé (o,i,j) on désigne par (E)

l'ensemble des points M d'affixes z telle qu'il existe $\alpha \in]-\frac{\pi}{2};\frac{\pi}{2} [$, vérifiant $f_{\alpha}(z)=0.$

- 1-a) résolvez dans \mathbb{C} l'équation $f_{\alpha}(z) = 0$.
 - b) si le point M(z) appartient à (E), que peut-on dire du point M' d'affixe \bar{z} ?
- 2- Pour $\alpha \epsilon$] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [fixé on pose : $Z = \frac{1}{2}i(z'+z'')$ où z' et z'' sont les solutions de

l'équation $f_{\alpha}(z) = 0$. Déterminer les racines quatrièmes de Z et représenter les points images sur un cercle.

Soit l'application $f : \mathbb{C} \to \mathbb{C}$

$$Z \mapsto f(z) = z^3 - 3(1+i)z^2 + (3+10i)z + 3(1-3i)$$

1- Déterminer les nombres complexes a, b ; et c pour que

$$f(z) = (z-1-i)(az^2 + bz + c)$$

- 2– résoudre dans \mathbb{C} l'équation f(z) = 0
- 3– Montrer que les points images dans le plan complexe, des solutions de cette équation sont alignés.

EXERCICE 13

Soit le polynôme complexe P (z) de la variable complexe z

$$P(z) = z^3 - (7 + 9i)z^2 + (39i - 14)z + 50$$

- 1-Montrer que l'équation P(z) = 0 admet une racine z_0 imaginaire pure.
- 2- Résoudre l'équation P(z) = 0. On notera z_1 la racine non imaginaire pur ayant la plus petite partie réelle et z_2 la troisième.
- 3-Dans le plan affine euclidien rapporté au repère (o , i , j) orthonormé on considère les points A, B, et C d'affixes respectives z_0 ; z_1 ; z_2 . Déterminer et construire l'ensemble des points M du plan tels que : MA 2 MB 2 + MC 2 = 4.

EXERCICE 14

- 1– Soit le polynôme P (z) = z^3 (3 + 6i) z^2 –(9 –15i) z +22– 6i
- a) Montrer que l'équation P(z) = 0 admet une racine réelle que l'on déterminera.
- b) En déduire une résolution dans \mathbb{C} de P (z) = 0;
- c) Soient A; B; C les images respectives des solutions de P(z) = 0. Placer dans le plan complexe muni d'un repère orthonormé ces points et en déduire la nature du triangle ABC. Donner une équation cartésienne du cercle (\mathbb{C}) circonscrit au triangle ABC.
- 2– Résoudre dans \mathbb{C} , l'équation $z^4 + 10z^2 + 169 = 0$.
- 3– Résoudre dans ${\mathbb C}$ les systèmes :

a)
$$\begin{cases} 5iz + (2-i)z' = 1 + 12i \\ (2-3i)z + (5-2i)z' = 39 - 10i \end{cases}$$
 b)
$$\begin{cases} 2iz + (1-3i)z' = 14 + 6i \\ (1-i)z + (5-2i)z' = 4 - 18i \end{cases}$$
 c)
$$\begin{cases} (1+i)z_1 + 2i\overline{z_2} = 3 - i \\ 2z_1 + 3\overline{z_2} = 5 \end{cases}$$

d)
$$\begin{cases} 2iz + 2z' = 4 - 4i \\ (1+i)z - 2z' = -5 + 7i \end{cases}$$
; e)
$$\begin{cases} 2z_1z_2 = 3 \\ \frac{1}{z_1} + \frac{1}{z_2} = \frac{2\sqrt{2}}{3} \end{cases}$$
; f)
$$\begin{cases} z_1 + z_2 + z_3 = 1 \\ z_1z_2 + z_1z_3 + z_2z_3 = 1 \end{cases}$$

4– Résoudre dans ℂ les équations suivantes :

a)
$$z^7 = \frac{(4+4i)^3}{(1+i\sqrt{3})^4}$$
 b) $z^5 = \frac{\left[1-2\sqrt{3}+i(2+\sqrt{3})\right]^7}{(2-i)^7(\sqrt{2}+i\sqrt{6})^2}$

Soit le polynôme complexe $P(z) = (z^2 + 3z)^2 + (3z + 5)^2$.

- 1) Factoriser P(z) en un produit de deux polynômes du second degré à coefficients complexes.
- 2) Résoudre dans \mathbb{C} l'équation $z^2 + 3(1+i)z + 5i = 0$
- 3) En déduire la résolution dans \mathbb{C} de l'équation P(z) = 0; puis montrer que P(z) est le produit de deux polynômes du second degré à coefficients réels.

EXERCICE 16

Le plan rapporté au repère orthonormé (o, \overrightarrow{u} ; \overrightarrow{v})

- 1– Résolvez dans \mathbb{C} l'équation $(z + \frac{1}{2} + i)^2 + \frac{1}{4} = 0$
- 2– On donne les points A (-1;-5) et B($\frac{1}{3}$; $\frac{1}{6}$). A tout point M d'affixe z, (z ≠ -1-5i) on

associe le point M' d'affixe Z tel que : $Z = 3i \times \left(\frac{z - \frac{1}{3} - \frac{1}{6}i}{z + 1 + 5i}\right)$

- a) Déterminer l'ensemble (Γ) des nombres complexes tels que $\mathbf{Z} = z$
- b) Déterminer l'ensemble (E) des points M tels que : |Z| = 3;
- c) Déterminer l'ensemble (Δ) des points M tels que M' décrit le cercle de centre l'origine O du repère et de rayon 1;
- d) Déterminer et construire l'ensemble (F) des points M tels que M' décrit le demi axe $[0, \vec{u})$ privé de $\{0\}$.

EXERCICE 17

Soit α un nombre réel appartenant à] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [. on considère l'équation d'inconnue z complexe (E) : $(1+iz)^3 (1-itg \alpha) = (1-iz)^3 (1+itg \alpha)$

- 1- soit z une solution de (E)
- a) Montrer que |1+iz| = |1-iz|.
- b) En déduire que z est un réel.
- 2- a) Exprimer $\frac{1+itg\alpha}{1-itg\alpha}$ en fonction de $e^{i\alpha}$
 - b) Soit z un nombre réel, on pose z = tg φ où $\frac{-\pi}{2} < \varphi < \frac{\pi}{2}$.

Ecrire l'équation portant sur φ traduisant (E) et le résoudre.

c) Déterminer les solutions z₁ ; z₂ ; z₃ de (E).

Soit u le nombre complexe défini par $u = \cos\theta + i \sin\theta$ où $\theta \in]-\pi$; π]

- 1- Calculer le module et un argument de $\frac{1-u}{1+u}$ (On discutera suivant les valeurs de θ)
- 2-En déduire le module et un argument de z tel que : $u = \frac{2+iz}{2-iz}$
- 3- Résoudre $(2+iz)^6 = (2-iz)^6$.

EXERCICE 19

Le plan rapporté au repère orthonormé (o, $\vec{u} ; \vec{v}$)

- 1– Trouvez l'ensemble des points M d'affixe z tels que les points images des nombres complexes 1 ; z ; 1+z² soient alignées.
- 2– On désigne par M le point d'affixe z et M' le point d'affixe Z tel que $Z = \frac{z+1}{z-1}$
- a) Trouver l'ensemble (D) des points M tel que Z soit un réel;
- b) Trouver l'ensemble (6) des points M tel que Z soit un imaginaire pur ;
- c) Trouver l'ensemble (Γ) des points M tel que O; M; M' soient alignés.

EXERCICE 20

Soit l'équation dans \mathbb{C} : $z^3-2z^2-iz+3-i=0$

- 1) Montrer que l'équation admet dans C une solution réelle.
- 2) En déduire la résolution dans C de cette équation.
- 3) Soient A; B; et C les points images de ces solutions dans le plan complexe muni d'un repère orthonormé. Déterminer la nature du triangle ABC.
- 4) Déterminer l'affixe de l'isobarycentre G de ce triangle.

EXERCICE 21

Soit l'application f : $z \mapsto f(z) = f : z \mapsto f(z) = \frac{iz}{z+i}$; $z \neq -i$

- 1- Déterminer les coordonnées du point B dont l'affixe z_0 est telle que : $f(z_0) = 1 + 2i$
- 2- Soit z $\in \mathbb{C} \{-i\}$. On note r le module de z+i et α une mesure de son argument. Donner la forme trigonométrique de f (z) i en fonction de r et α .
- 3- Soit A le point d'affixe i.
- a) Déterminer l'ensemble (\mathcal{E}) des points M vérifiant: $|f(z)-i|=\sqrt{2}$ et l'ensemble (D) des points M tels que $\frac{\pi}{4}$ soit une mesure l'argument de f(z)-i.
- b) Montrer que B appartient à (E) et (D) puis construire (E) et (D).
- 4- à tout point d'affixe $Z = (\sqrt{2 \sqrt{2}} i\sqrt{2 + \sqrt{2}})z$. Déterminer l'ensemble (£) des points M tels que |Z| = 8.
- 5– résoudre dans \mathbb{C} , l'équation z^2 $(1+i\sin 2\theta)$ $z+\frac{1}{2}i\sin 2\theta=0$ où θ est un paramètre réel. En discutant selon les valeurs de θ , on écrira les solutions z_1 et z_2 de cette équation sous la forme trigonométrique.

- 1°) Ecrire sous forme algébrique le nombre complexe $z = 7 i + \frac{5}{(1-7i)(i-1)}$
- 2°) Ecrire sous forme trigonométrique le nombre complexe t dans les cas suivants :

a)
$$t = \frac{(1+i)^4}{(1+i\sqrt{3})(\sqrt{3}-i)}$$
; b) $t = -2e^{i\frac{2\pi}{3}}$; c) $t = \frac{1+e^{i\frac{2\pi}{3}}}{1-e^{i\frac{2\pi}{3}}}$.

- 3°) a) Déterminer les racines sixièmes de l'unité ; puis les écrire sous formes Trigonométrique et algébrique.
 - b) Calculer $(1-i)^6$.
 - c) En déduire les racines sixièmes du complexe T = 8i sous formes trigonométrique et algébrique.

EXERCICE 23

- 1°) a) Vérifier que $(2 + i)^4 = -7 + 24i$
 - b) Trouver les racines quatrièmes de 1
 - c) Résoudre dans \mathbb{C} l'équation $z^4 + 7 24i = 0$
- 2°) Soit l'équation (E) : $z^3 2iz^2 9z + 18i = 0$
- a) Montrer que (E) admet une solution imaginaire pure z₀ que l'on déterminera.
- b) Résoudre (E).
- 3°) Résoudre dans ℂ l'équation : $z^2 + z 1 + 3i = 0$.

EXERCICE 24

Le plan est muni d'un repère orthonormé.

A est le point d'affixe z = 1+2i; B est le point d'affixe t = 1+5i

C est le point d'affixe k = 4+2i. On pose $Z = \frac{k-z}{t-z}$

- 1°) Que représente |Z|?
- 2°) Que représente arg (Z)?
- 3°) Calculer Z et en déduire la nature du triangle ABC
- 4°) Déterminer l'ensemble (\mathfrak{I}) des points M d'affixe m tels que |m-z|=|m-t|.

EXERCICE 25

- 1) Déterminer dans \mathbb{C} les racines carrées de u = 7 + 24i.
- 2) Les racines z_1 et z_2 d'une équation du second degré à cœfficients

complexes vérifient : $\begin{cases} z_1 + z_2 + z_1 z_2 = 4 \\ \frac{z_1 + z_2}{z_1 z_2} = 1 \end{cases}$. Former cette équation et la résoudre dans \mathbb{C} .

- I) Soit le complexe $Z = (\sqrt{3}+1)+i(\sqrt{3}-1)$.
- 1°) Déterminer le module et un argument de z^2 . En déduire le module et un argument de z.
- 2°) Déduire de ce qui précède les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- 3°) Résoudre dans \mathbb{R} l'équation : $(\sqrt{3} + 1)\cos x + (\sqrt{3} 1)\sin x = \sqrt{2}$
- II) 1°) Trouver l'ensemble des points M(x;y) du plan d'affixe z tel que : $Z^2 + 2z 3$ soit un réel .
- 2°) Déterminer l'ensemble des nombres z tels que : $\frac{z+2i}{z-4i}$ soit réel (on suppose $z \neq 4i$).

EXERCICE 27

On pose $P(z) = z^4 - 6z^3 + 23z^2 - 34z + 26$.

1°) α désigne un complexe quelconque. Montrer que $P(\overline{\alpha}) = \overline{P(\alpha)}$.

Déduisez que si $P(\alpha) = 0$, alors $P(\overline{\alpha}) = 0$.

- 2°) Calculer P(1-i); en déduire les solutions de l'équation P(z) = 0
- 3°) Placer les points images des solutions de l'équation f(z) = 0 dans le plan muni d'un repère orthonormé $(O; \vec{u}; \vec{v})$.
- 4°) Montrer que tous ces points appartiennent à un même cercle dont on précisera le centre et le rayon (points cocycliques).

EXERCICE 28

On donne $A = 5\sqrt{2}(1+i)$; $B = -5(1+i\sqrt{3})$

- 1°) Déterminer le module et un argument des nombres complexes : A ; B ; $\frac{1}{A}$; $\frac{1}{A}$.
- 2°) Soit Z le complexe tel que A Z = B. Écrire Z sous forme algébrique puis sous forme trigonométrique.
- 3°) En déduire les valeurs exactes de $\cos\left(\frac{13\pi}{12}\right)$ et $\sin\left(\frac{13\pi}{12}\right)$

EXERCICE 29

Soit l'équation (E): $z^3 - 10z^2 + 36z - 40 = 0$.

- 1°) Vérifier que 2 est une solution de l'équation (E).
- 2°) Trouver les réels a ; b ; c tels que : $z^3 10z^2 + 36z 40 = (z 2)(az^2 + bz + c)$.
- 3°) En déduire la résolution dans \mathbb{C} de l'équation (E).
- 4°) On pose $z_A = 2$; $z_B = 4 2i$; $z_C = 4 + 2i$. Placer les images respectives A; B, C dans le plan complexe rapporté à un repère orthonormé.
- 5°) Calculer $|z_C z_A|$; $|z_C z_B|$; $|z_A z_B|$. En déduire la nature du triangle ABC.

Dans le plan complexe rapporté à un repère orthonormé, on considère le polynôme complexe $f(z) = z^3 - (5+i)z^2 + 2(5+3i)z - 4(2+4i)$.

- 1°) Calculer f(2i). Que peut-on conclure ?
- 2°) Trouver les complexes a ; b ; c tels que $f(z) = (z-2i)(az^2+bz+c)$.
- 3°) a) Calculer $(1+2i)^2$.
 - b) En déduire la résolution de l'équation f(z) = 0.
- 4°) Soient A; B; C les points d'affixes respectives 2i; 3+i; 2-2i.
 - a) Placer les points A; B; C.
 - b) On pose $Z = \frac{z_C z_B}{z_A z_B}$. Donner la forme algébrique de Z. en déduire le module et un argument de Z.
 - c) Interpréter le module et un argument de Z.
- 5°) Soit D le point d'affixe z_D tel que $z_D z_C = z_A z_B$. Déterminer les coordonnées de D puis le placer sur la figure précédente.
- 6°) En déduire la nature du quadrilatère ABCD.

EXERCICE 31

Le plan est muni d'un repère orthonormé (unité graphique = 1cm). Soit le polynôme complexe $f(z) = z^3 - (5+8i)z^2 - (13-32i)z + 57 - 24i$

- 1°) Montrer que l'équation f(z) = 0 admet une solution réelle α .
- 2°) Déterminer les complexes P et Q tels que $f(z) = (z \alpha)(z^2 + Pz + Q)$.
- 3°) En déduire la résolution dans \mathbb{C} de l'équation f(z) = 0. (On notera z_A la solution réelle ; z_B la solution non imaginaire dont la partie réelle est positive ; et z_C la troisième solution).
- 4°) Soient A; B; C les points images respectives des solutions z_A ; z_B ; z_C de l'équation f(z) = 0. Placer ces points dans le plan complexe. En déduire la nature du triangle ABC.
- 5°) Déterminer les coordonnées du point I d'affixe z = x + iy tel que :

$$|z-z_A|=|z-z_B|=|z-z_C|.$$

- 6°) Déterminer et construire l'ensemble (Q) des points M(x ; y) du plan tel que : $MA^2 + MC^2 = 32$.
- 7°) Soit D le point d'affixe $z_D = -1 3i$.
 - a) Déterminer la nature du polygone ABCD.
 - b) Calculer le périmètre et l'aire du polygone ABCD.

Soit le polynôme complexe $P(z)=z^3-iz^2-11z+51i$

- 1) Calculez P(3i)
- 2) Déterminez les complexes a et b tels que $P(z) = (z 3i) (z^2 + az + b)$
- 3) Résoudre dans C l'équation P(z) = 0
- 4) Placez dans le plan complexe les points A, B, C d'affixes respectives :

$$Z_A = 3i$$
 ; $Z_B = -4 - i$; $Z_C = 4 - i$.

- 5) a) Calculez $|Z_B Z_A|$; $|Z_C Z_A|$; $|Z_C Z_B|$.
 - b) En déduire la nature du triangle ABC.
- 6) Déterminez et construire l'ensemble (E) des points M du plan tels que : $MB^2 + MC^2 = 64$.

EXERCICE 33

On désigne par \mathbb{C} des nombres complexes. On pose :

$$f(z) = z^3 - (3+3i)z^2 - (2-9i)z + 8 - 6i$$
; $z \in \mathbb{C}$

- 1°) Montrer que l'équation f(z)= 0 admet une solution réelle m.
- 2°) Déterminer le polynôme g(z) à coefficients complexes tel que:f(z)=(z-m)g(z).
- 3°) Résoudre dans ℂ l'équation : f(z)=0.

EXERCICE 34

On veut déterminer trois nombres complexes. Les modules de ces trois nombres forment une suite géométrique de raison 2, et leurs arguments une suite arithmétique de raison $\frac{2\pi}{3}$. Déterminer ces trois nombres z_1 ; z_2 ; z_3 sachant que leur produit est z_1 ; z_2 ; z_3 = 4 + 4 $i\sqrt{3}$; et que l'argument de z_1 appartient à] 0; $\frac{\pi}{2}$ [. On donnera la réponse sous forme trigonométrique.

EXERCICE 35

Soient trois nombres complexes Z_1 =[r_1 ; θ_1]; Z_2 =[r_2 ; θ_2]; Z_3 =[r_3 ; θ_3] tels que les modules r_1 ; r_2 ; r_3 forment une suite géométrique de raison $\frac{1}{2}$ et les arguments θ_1 ; θ_2 ; θ_3 forment une suite arithmétique de raison $\frac{\pi}{3}$. Déterminez ces trois nombres complexes Z_1 ; Z_2 ; Z_3 sachant que leur produit est $Z_1Z_2Z_3$ = -i et que $\theta_1\epsilon$] 0; $\frac{\pi}{2}$ [. On donnera les nombres complexes Z_1 ; Z_2 ; Z_3 sous forme trigonométrique ; algébrique et exponentielle.