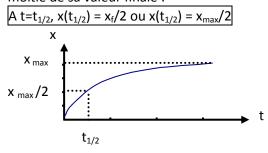


Transformations lentes et rapides

Points de cours	Explications ou utilisations
Demi-équations électroniques	• Un oxydant est réduit (il subit une
d'oxydoréduction :	réduction) pour donner un réducteur.
• Ox + n×é = red	 Un réducteur est oxydé (il subit une oxydation : OPEL, Oxydation Perte ELectrons) pour donner un oxydant
• Red = ox + n×é	
Les facteurs cinétiques sont les paramètres qui peuvent influencer la vitesse d'une réaction : température, concentration des réactifs, présence d'un catalyseur.	Une trempe consiste à diluer le milieu réactionnel par une grande quantité d'eau glacée: on diminue la température et la concentration des réactifs, on joue donc sur
presente a un catalyscu it	deux facteurs cinétiques pour « stopper » la réaction.

Spectrophotométrie


Points de cours	Explications ou utilisations
 Un spectrophotomètre permet de mesurer l'absorbance d'une solution colorée pour une longueur d'onde donnée. L'absorbance est proportionnelle à la concentration de la solution selon la loi de Beer-Lambert : A(λ) = ε(λ)×l×c = k×c 	 2 utilisations courantes de cet appareil qui mesurer l'absorbance : On trace une courbe d'étalonnage A=f(c) (droite car proportionnalité) avec des solutions de concentration différentes de la même espèce, on peut alors trouver à l'aide de cette courbe la concentration d'une solution inconnue. On peut suivre directement dans une cuve de spectrophotomètre l'évolution d'une réaction chimique qui créerait ou consommerait une espèce colorée.

Cinétique

Points de cours	Explications ou utilisations
 La vitesse d'une réaction chimique diminue au cours du temps, car au fur et à mesure, la concentration des réactifs diminue, ceux-ci 	 On peut expliquer l'évolution de la vitesse à partir de la courbe x=f(t) : La vitesse est
étant consommés.	proportionnelle à dx/dt qui correspond au coefficient
• La vitesse volumique de réaction se calcule grâce à la formule : $v = \frac{1}{V} \times \frac{dx}{dt}$ avec x l'avancement de la réaction. Elle s'exprime en mol.s ⁻¹ .m ⁻³ .	directeur de la courbe $x=f(t)$ En traçant les tangentes à la courbe $x=f(t)$ à différents instants, on se rend compte que leur coefficient directeur diminue.

 Le temps de demi-réaction est égal au temps pour que l'avancement parvienne à la moitié de sa valeur finale :

 On peut obtenir à partir de cette formule l'expression de la vitesse en fonction de la concentration d'un réactif ou en fonction de la concentration d'un produit. En effet, à l'aide d'un tableau d'avancement, on relie x à la quantité de matière d'un réactif ou d'un produit. Le facteur 1/V dans l'expression de la vitesse nous donne accès aux concentrations.

On aura :

Pour un réactif, v % à
$$-\frac{d[réactif]}{dt}$$

Pour un produit, v % à $\frac{d[produit]}{dt}$

(% signifie proportionnel)