

SESSION NORMALE 2009 Série D

EXERCICE N°1

I. 1 Calcul de v_A

Système : balle ; Référentielle terrestre supposé galiléen

Bilan des forces : $\vec{P} = m \vec{g}$

Théorème du centre d'inertie : m \vec{g} = m $\vec{a} \Rightarrow \vec{g}$ = \vec{a} = \vec{cst} Le mouvement est rectiligne uniformément varié d'où $v_B^2 - v_A^2 = -2g (h_B - h_A) \implies v_A = \sqrt{2g (h_B - h_B)} = 5.05 \text{ m. s}^{-1}$

2. Equation horaire

Le mouvement est rectiligne uniformément varié ⇒

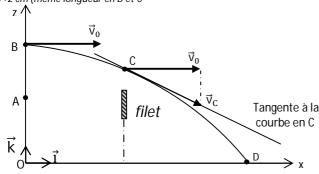
 $v(t) = -g t + v_A = -9$, 8 t + 5,05

3. <u>Durée</u>: $0 = -gt + v_A \Longrightarrow t = \frac{v_A}{g} = 0.51 s$

II. 1 Equations horaires x(t), z(t).

Théorème du centre d'inertie : m \vec{g} = m $\vec{a} \implies \vec{g}$ = \vec{a}

$$\begin{array}{ll} \text{ at } = 0 & \overrightarrow{v}_0 \mid \begin{matrix} V_0 \\ 0 \end{matrix}; \overrightarrow{OG}_0 \mid \begin{matrix} X_0 = 0 \\ Z_0 = Z_B \end{matrix} \\ \text{ at } \neq 0 & \overrightarrow{a} \mid \begin{matrix} 0 \\ -g \end{matrix}; \overrightarrow{v} \mid \begin{matrix} -g \\ -g \end{matrix}; \overrightarrow{OG} \mid \begin{matrix} X_0 = 0 \\ Z_0 = -\frac{1}{2}g t^2 + Z_B \end{array}$$


$$t = \frac{x}{v_0} \Longrightarrow Z = -\frac{1}{2}g\frac{x^2}{v_0^2} + Z_B$$

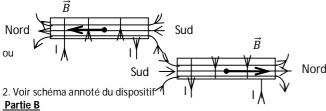
2.1 Vitesse $v_0: z_C = -\frac{1}{2}g\frac{x_C^2}{v_0^2} + z_B \Longrightarrow v_0 = x_C\sqrt{\frac{g}{2(z_B - z_B)}}$ AN: $v_0 = 26,57 \text{ m.s}^{-1} \approx 26,6 \text{ m.s}^{-1}$

2.2 Représentation

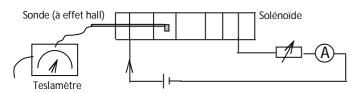
Feuille annexe à rendre avec la copie

 $\vec{v}_0 \leftrightarrow 2 \text{ cm}$ (même longueur en B et C

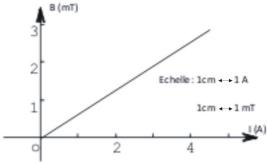
3.1 Calcule de x_D


$$-\frac{1}{2}g\frac{x_D^2}{v_0^2} + z_B = 0 \Longrightarrow x_0 = v_0\sqrt{\frac{2z_B}{g}}; x_D = 21,16 \text{ m}$$

 $3.2~x_D$ = 21,16 m. La ligne "arrière" du terrain se trouve à 9+ 9,3 =18,3 m de O. 21,16 -9,3 = 11,86 m; $11,86 > 9m \implies le service n'est pas réussi.$


EXERCICE N°2

Partie A


1. Schéma du solénoïde et représentation

2.1 Schéma annoté du dispositif

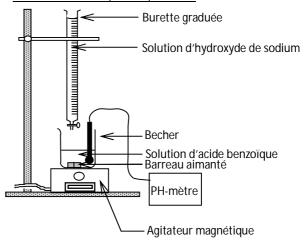
2.1 Tracé de la courbe B=f(I)

2.2 Exploitation de la courbe

B est proportionnel à I car la courbe est une droite qui passe par l'origine des axes ou (la courbe est de la forme B= k I)

$$k = \frac{\Delta B}{\Delta I} = \frac{(2,80-1,25).10^{-3}}{4,5-2} = 6,2.10^{-4} \text{ T/A}$$

2.3 Expression de B.:
$$B = \mu_0$$
.n.l or $n = \frac{N}{e} \Longrightarrow B = \mu_0 \frac{N}{e} I$

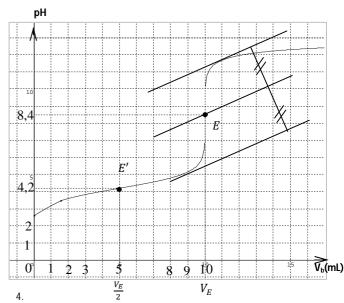

2.3 Expression de B. :
$$B = \mu_0$$
 n.l. or $n = \frac{N}{\ell} \implies B = \mu_0 \frac{N}{\ell} I$
2.4 Détermination de N : $k = \frac{\Delta B}{\Delta I} = \mu_0 \frac{N}{\ell} \implies N = \frac{K\ell}{\mu_0} = \frac{6.2.10^{-4} \times 0.4}{4\pi.10^{-7}} = 197$

3. Expression et valeur de l'inductance L

$$L = \mu_0 \frac{N^2}{\rho} S$$
; AN: L= 2,5.10⁻⁴ H ou L = 0,25 mH

EXERCICE N°3

1. Schéma annoté du dispositif expérimental



2. Equation bilan de la réaction de dosage

$$C_6H_5CO_2H + OH^- \rightarrow C_6H_5CO_2^- + H_2O$$

 $C_6H_5CO_2H + (Na^+ + OH^-) \longrightarrow (C_6H_5CO_2^- + Na^+) + H_2O^-$

3. Tracé de la courbe pH =f (V_b)

4.1 Méthode des tangentes E (10 ; 8,4)

 $V_E/2=5 \text{ mL} \Longrightarrow E'(5;4,2)$

4.2 A l'équivalence, on a : $C_a V_a = C_b V_b \Longrightarrow C_a = \frac{C_b V_b}{v_a} = 0,1 \text{ mol.L}^{-1}$ A la demi-équivalence, pH = pKa. Pour V_b = 5 mL, pH =pKa = 4,2.

5. Pour V = 3 mL \Longrightarrow pH=3,8 • $[H_3O]$ 3.8 = 1,58.10⁻⁴ mol.L⁻¹;

•
$$[Na^+] = \frac{C_b V}{V_b + V} = 2,30.10^{-2} \text{ mol.L}^{-2}$$

•
$$[OH^-] = \frac{K_e}{[H_3O^+]} = 6.3.10^{-11} \text{ mol.L}^{-1}$$

• $[Na^+] = \frac{C_bV}{V_a+V} = 2.30.10^{-2} \text{ mol.L}^{-1}$
• $[C_6H_5CO_2^-] + [OH^-] = [Na^+] + [H_3O^+]$
• $[C_6H_5CO_2^-] \approx [Na^+] = 2.30.10^{-2} \text{ mol.L}^{-1}$

•
$$[C_6H_5CO_2H] + [C_6H_5CO_2^-] = \frac{c_av_a}{v_a+v}$$

 $[C_6H_5CO_2H] = \frac{c_av_a}{v_a+v} - [C_6H_5CO_2^-]$
 $[C_6H_5CO_2H] = 5,40.10^2 \text{ mol.L}^{-1}$
• $pH = pKa + log \frac{[c_6H_5CO_2^-]}{[c_6H_5CO_2H]} \Longrightarrow pKa = pH - log \frac{[c_6H_5CO_2^-]}{[c_6H_5CO_2H]} = 4,2$
6. 6. 1

•
$$pH = pKa + log \frac{[c_6H_5Co_2^-]}{[c_6H_5Co_2H]} \Rightarrow pKa = pH - log \frac{[c_6H_5Co_2^-]}{[c_6H_5Co_2H]} = 4,2$$

$$pH_E \in [7,5-8,6] \\ pH_E \in [8,2-10]$$
 Les 2 indicateurs colorés conviennent

Justification : $\Delta_1 pH < \Delta_2 pH$ (1,1) (1,8)

EXERCICE N°4

1. L'autre corps : Chlorure d'hydrogène. Formule *HCℓ*. La réaction est totale, rapide, exothermique

2. E:
$$C_nH_{2n+1}CO_2H \implies M_E = 14n + 46$$

2. E:
$$C_nH_{2n+1}CO_2H \Rightarrow M_E = 14n + 46$$

 $\frac{M_E}{100} = \frac{16x2}{53.3} \Rightarrow M_E = 60 \text{ g.mol}^{-1} \Rightarrow n = 2$
donc E: $CH_3 - COOH$ Acide éthanoïque

donc E :
$$CH_3 - COOH$$
 Acide éthanoïque
Formule de F : $C_4H_{10}O$ (C_4H_9OH)

$${\rm F}: \quad \mathit{CH}_3 - \left(\mathit{CH}_2\right)_2 - \mathit{CH}_3 - \mathit{OH} \quad {\rm Butan-2-ol} \; ; \\ {\rm Famille: alcool} \quad$$

$$G: CH_3^ C-C_2H_5$$
 nom: Butanone

$$\overline{2 (MnO_4^- + 8 H^+ + 5e^- \to Mn^{2+} + 4H_2O)}
5(C_4H_{10}O \to C_4H_8O + 2H^+ + 2e^-)$$

$$5C_4H_{10}O + 2MnO_4^- + 6H^+ \rightarrow 5C_4H_8O + 2Mn^{2+} + 8H_2O$$

$$5C_4H_{10}O + 2MnO_4^- + 6H_3O^+ \longrightarrow 5C_4H_8O + 2Mn^{2+} + 14H_2O$$

Nom : éthanoate de méthylpropyle

Fonction chimique: Ester