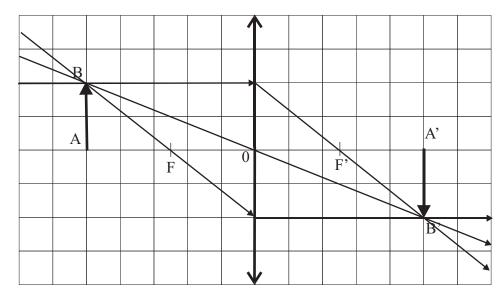


CORRECTION BEPC 2011 ZONE 1

OPTIQUE

1. Je détermine la distance focale f de cette lentille.

$$f = \frac{1}{C}$$


Application numérique : $f = \frac{1}{20} = 0.05$ m ou f = 5 cm.

- 2. L'image A'B' nette de 4 cm de hauteur est obtenue sur l'écran situé à 10 cm de la lentille.
 - 2-1. Je représente sur une feuille de papier millimétré à l'échelle 1/2 :
 - les foyers objet (F) et image (F'). La dimension réduite de la distance focale : $f = 5 \times \frac{1}{2} = 2,5$ cm
 - la lentille (L).

La dimension réduite de la distance lentille-image : OA' = $10 \times \frac{1}{2} = 5 \text{ cm}$.

- l'image A'B' (avec A' sur l'axe oplique et B' au dessus de l'axe).

La dimension réduite de la hauteur de l'image : A'B' = $4 \times \frac{1}{2} = 2 \text{ cm}$.

2.2. J'utilise la marche des rayons particuliers pour construire l'objet AB.

Si B est au-dessus de l'axe optique alors son image B' est en dessous de l'axe optique car l'image d'un objet à travers une lentille convergente est renversée. On détermine ainsi AB en traçant deux rayons particuliers qui sont issus de B,

- le rayon OB' qui n'est pas dévié car il passe par le centre optique.
- le rayon F'B' qui est le rayon émergent du rayon incident parallèle à l'axe optique (voir schéma ci-dessus.).
- 2.3. Je détermine la hauteur de l'objet AB.

Ici il s'agit de la hauteur réelle de l'objet.

La hauteur réelle h_{AB} de l'objet AB est : $h_{AB} = \frac{h_{AB} \text{ Schéma}}{\text{Échelle}}$

Application numérique: $h_{AB} = 2 \text{ cm} \implies h_{AB} = 2 \text{ x } 2 = 4 \text{ cm}$; $h_{AB} = 4 \text{ cm}$

Fomesoutra.com

MECANIQUE

1. Je détermone:

1-1 le volume du liquide (L)

Il est donné par l'étape 2 de l'expérience en effectuant la lecture sur le récipient gradué : V_L= 40 cm³.

1-2 la masse du liquide (L).

Elle est donnée par la différence entre la masse du récipient contenant le liquide et la masse du récipient vide : $m_1 = m_2 - m_1$.

Application numérique :
$$m_L = 270 \text{ g} - 220 \text{ g} \implies m_L = 50 \text{ g}$$

1-3 la masse volumique de (L).

$$a_{L} = \frac{m_{L}}{V_{L}}$$

Application numérique :
$$a_L = \frac{50}{40} = 1,25 \text{ g/cm}^3 \approx 1,2 \text{ g/cm}^3$$
.

2. Je détermine la nature du liquide en me référent au tableau.

En comparant la masse volumique du liquide avec celles du tableau, le liquide est l'eau salée.

ELECTRICITE

1. Je détermine la valeur de la résistance R₁

$$U_1 = R_1 \times I \implies R_1 = \frac{U_1}{I}$$

Application numérique :
$$I = 200 \text{ mA} = 0.2 \text{ A} \implies R_1 = \frac{2.2}{0.2} = 11 \Omega$$
; $R_1 = 11 \Omega$

2. Je détermine la valeur de la résistance équivalente à cette association.

Comme les deux conducteurs ohmiques sont montés en série alors $R_{\acute{e}q} = R_1 + R_2$

Application numérique :
$$R_{\acute{e}q} = 11 \Omega + 18 \Omega = 29 \Omega$$

3. Je détermine la valeur de la tension U_{AB} entre A et B.

D'après la loi des tensions dans un circuit en série on a : $U_{AB} = U_1 + U_2$

Application numérique :
$$U_{AB} = 2.2 \text{ V} + 3.6 \text{ V} = 5.8 \text{ V} \implies U_{AB} = 5.8 \text{ V}.$$

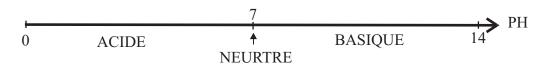
Autre méthode : d'après la loi d'Ohm aux bornes de la résistance équivalente on a :

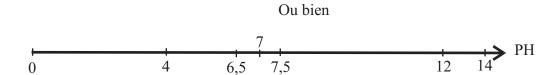
$$U_{AB} = R_{\acute{e}q} \times I \implies U_{AB} = 29 \times 0.2 = 5.8 \text{ V}.$$

CHIMIE

- 1. Le tableau présente le pH de certains liquides.
 - 1-1. Je classe ces liquides selon leur caractère acide ou basique et je justifie.
 - Les liquides acides : Jus de tomate et lait car leur pH est inférieur à 7.
 - Les liquides basiques : Sang et Eau de chaux car leur pH est supérieur à 7.
 - 1-2. Pour chaque caractère acide ou basique, j'indique l'ion majoritaire.
 - Liquide acide : l'ion majoritaire est l'ion hydronium H⁺ ou H₃O.⁺
 - Liquide basique: l'ion majoritaire est l'ion hydroxyde OH⁻.

2-1. Je détermine la nature d'une solution qui n'est ni acide, ni basique.


La nature d'une solution qui n'est ni acide ni basique est une solution neutre.


2-2. Je détermine la valeur du pH d'une telle solution.

Le pH d'une telle solution est égal à 7.

3. Je représente l'échelle des pH.

2.

