

CORRECTION DU SUJET DE MATHEMATIQUE (I.O)

1- Résolvons l'équation

$$2X^2 - 7x + 3 = 0$$

 $D = (-7)^2 - a(2).(3) = 49-24-25$
 $\sqrt{D} = \sqrt{25} = 5$

$$X_1 = \frac{-b\sqrt{\Delta}}{2a} = \frac{7-5}{4} = 1/2$$

$$X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{7+5}{4} = 3$$

$$S/R = (\frac{1}{2};3)$$

2- déduction de la résolution

(E):
$$X \in \mathbb{R}$$
, $2e^{2x}$ - $7e^{x}$ +3 = 0
 $2e^{2x}$ - $7e^{x}$ + 3 = 0
 $2(ex)^{2}$ - $7e^{x}$ +3 = 0

Posons X =
$$e^{x}$$

2X² - 7x +3 = 0

De (1), on a :
$$X = \frac{1}{2}$$
 ou $X = 3$ or $X = X = e^x$ ainsi donc : $e^x = \frac{1}{2}$ ou $e^x = 3$ lne^x = ln (1/2) ou xlne^x = ln 3 $X = -\ln 2$ ou $x = \ln 3$

$$S/R = (-ln2; ln3)$$

Exercice 2

PARTIE A

1- Les chiffres sont répétés donc on a :

$$N = 10^4 = 10.000$$

2- Le nombre de codes PIN commençant par 24 Les éléments sont non distincts, les 2 chiffres restants peuvent être répétés :

$$N = 10^2 = 100$$

3- Le nombre de code PIN composés à la fois de 0 ; 2 ; 4 et 8.

Ici, nous avons une permutation car, il s'agit de ranger 4 chiffres dans 4 : N = 4 x3 x2x 1 = 24

4- Le nombre de code PIN, composés de chiffres distincts

Ici, nous avons un arrangement de 4 dans 10

$$N = A_{10}^4 = 10 \times 9 \times 87 = 5040.$$

PARTIE B

1- Soit le code Pin formé par Angèle commençant par 24. Card A = 100 et Card Ω= 10.000

$$P(A) = \frac{cardA}{card\Omega} = \frac{21}{10.000} = 0,0021$$

Exercice 3

PARTIE A

1- A travers la lecture graphique :

Lim
$$f(x) = -8$$

2- Vérifions

(T):
$$y = f'(1) = (x-1) + f(1)$$

= $x - 1 + 1$
(T) = $y = x$

3- Déterminons graphiquement le signe de f(x) pour x E]0;10]

$$\forall x \in]0;1/e[, f(x) < 0 ;$$

$$\forall x E] 1/e; 10[\quad ; f(x) > 0$$

$$\forall < E (1/e), f(x) = 0$$

 $\forall x \in]0;+oo[,h'(x)oo donc h est strictement décroissante]1;+<math>\infty$ [

3- a- Etude du signe de
$$f(x)$$
- $h(x)$ sur $]0;+\infty[$ $f(x) - h(x) = 1 + \ln x - (-x + 1 \ln x) = x$ $\forall x \in]0;+oo[, x > o donc $f(x) - h(x) > 0$$

b-Position relatives de (G) et (T)

 $\forall x \in]_{1;+\infty}[, f(x) - h(x) > 0 \text{ Ainsi (G) est au dessus de (T)}]$

4- Construction T (voir le tracé)

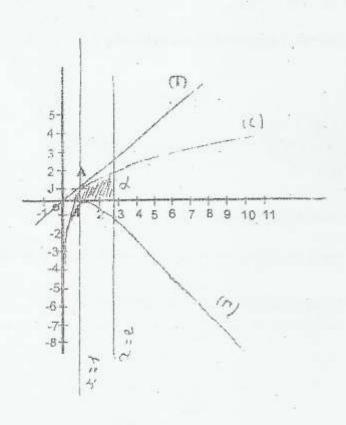
5- Soit F: F:
$$]1;+[\longrightarrow R \\ \times \times \ln(x)-x$$

a* Vérifions

$$\forall x \in]_{i;+\infty}[, f(x) = (x.\ln x - x)' = \ln x + 1 - 1 = \ln x$$

Ainsi donc F est primitive de Inx

b- Justification de
$$\alpha$$
 = e
= (1+ lnx)dx
= (x + x.lnx - x)^e₁
= e +e.lne-e-1 +1ln1+1



4- Nous avons la fonction f(x) = ax + b + ln(x)

a- vérifions que :

$$\forall x \in]0;+oo[, f'(x) = (ax +b + lnx)'$$

= 4 + 1/x
 $\forall x \in]0;+oo[, f'(x) = (ax+1)/x$
b- Démontrons que a = 0 et b = 1

$$f(1)=1 \Leftrightarrow a \cdot 1 = 1 \Rightarrow a = 0$$

 $f(x) = \Leftrightarrow a + 1 = 1 \Rightarrow b = 1$

Ainsi donc f(x) = 1 + Inx

PARTIE B

Nous avons les fonctions suivantes

$$g(x) = \frac{1-x}{x}$$
 et $h(x) = -x + 1 + \ln(x)$

1- Justifions que (Δ): x= 0 est asymptote à (T)

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} (-x + 1 + \ln x) = -00$$

Car $\lim_{x \to 0} (-x + 1 = 1 \text{ et } \lim_{x \to 0} \ln x = -00)$

Ainsi donc(\triangle); x = 0 est asymptote verticale à (T)

2- a- Démontrons

$$\forall x \in]0;+oo[, h'(x) = (-x+1 + lnx)'$$

 $h'(x) = -1 + 1/X = (1-x) / x = g(x)$
 $\forall x \in]0;+oo[,h'(x) = g(x)$

b- Déduisons en le sens de variation de h

 $\forall x \in]0;+oo[, x > 0 \text{ donc le signe de h'}(x) \text{ est celui de 1-x ainsi donc}:$

∀X E]0;1[, h'(x)>0 donc h est strictement croissante]0;1[