

MATHEMATICS

Nationality

No.

No.

Marks

Marks

Name

(Please print full name, underlining family name)

Note that all the answers should be written on the answer sheet.

- 1. Fill in the following blanks with the correct numbers.
- (1) The number of integers x that satisfy the following inequalities $x^2 5x + 1 < 0$ is $\boxed{}$.
- (2) When -1 < a < 2, then $\sqrt{a^2 + 2a + 1} + \sqrt{a^2 4a + 4} = \boxed{}$
- (3) When $2^x 2^{-x} = 4$, then $2^{2x} + 2^{-2x} = \boxed{1}$, $2^{3x} 2^{-3x} = \boxed{2}$
- (4) When $\log_3(x-3) \log_9(x-1) = 0$, then $x = \sqrt{2}$
- (5) When AB = x + 2, BC = x, AC = x 2, $\angle C = 120^{\circ}$ with $\triangle ABC$, then $x = \boxed{}$
- (6) Four digit numbers are made using the digits {0,1,2,3,4} where each digit is different.

How many four - digit numbers are there? The answer is ①.

How many four - digit odd numbers are there? The answer is ②

- (7) $1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \boxed{\textcircled{1}}$. $6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 + 13^2 = \boxed{\textcircled{2}}$.
- (8) Let $\overrightarrow{a} = (-1, 2)$, $\overrightarrow{b} = (1, x)$. When $2\overrightarrow{a} + 3\overrightarrow{b}$ and $\overrightarrow{a} 2\overrightarrow{b}$ are the parallel vectors, then x = [
- (9) Let $f(x) = x^2 + 2x 1$, g(x) = x + 1(i) If f(x) = g(x), $x = \boxed{1}$ or $x = \boxed{2}$
 - (ii) The coordinate of the vertex point of the parabola y = f(x) is (①).
 - (iii) The equation of the tangent to the parabola y = f(x) at the point (0, f(0)) is $y = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - (iv) The area bounded by the parabola y = f(x) and the line y = g(x) is _____.

2. The circle O is an inscribed circle of $\triangle ABC$ and points P, Q and R are the points of tangency of sides BC, CA and AB respectively.

$$AB = AC = 13, BC = 10.$$

Fill in the following blanks with the correct numbers.

(4) The radius of the inscribed circle O = _____.

(5) The scalar product of two vectors $\overrightarrow{AB} \cdot \overrightarrow{AO} = \boxed{1}$, $\overrightarrow{AB} \cdot \overrightarrow{BC} = \boxed{2}$.

3. The graphs of function $y = ax^2 + bx + c$ on the plane xy are shown below. Fill the blanks with the appropriate values of a, b and c for each graph.

(1)

(2)

(3)

a = 1

b = 2

c = 3

 $a = \boxed{1}$

b = 2

c = 3

 $a = \boxed{\bigcirc}$

b = 2

c = 3