AVRIL 2014

CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie A

2^{ème} COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 3 heures)

Exercice nº 1

Soit f la fonction numérique définie par : $f(x) = x^2 e^{-x}$

- 1. Etudier les variations de f et tracer son graphe.
- 2. Etudier la convexité de f.
- 3. Calculer $\int_{0}^{1} f(x) dx$

Exercice n° 2

Soit f la fonction définie sur l'ensemble des nombres réels strictement positifs par :

 $f(x) = x^3 Ln(x)$, où Ln désigne le logarithme népérien.

- 1. Etudier les variations de f. Cette fonction est-elle prolongeable par continuité en 0 ?
- 2. Etudier la convexité de f.
- 3. Tracer le graphe de *f*.
- 4. Calculer $\int_{0}^{1} f(x) dx$

Exercice n° 3

Répondre par vrai ou faux aux questions suivantes, en justifiant votre réponse par une démonstration ou un contre-exemple:

- 1. Toute primitive d'une fonction positive ou nulle sur un intervalle [a,b] est positive ou nulle.
- 2. Toute primitive d'une fonction négative ou nulle sur un intervalle [a,b] est décroissante.
- 3. Toute fonction continue sur un intervalle [a,b] est la primitive d'une fonction continue.

Exercice nº 4

Soit M(x, y) un point du plan où $0 \le x \le 1$, $0 \le y \le 1$.

On pose
$$D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}.$$

On tire aléatoirement des valeurs de x et de y entre 0 et 1. Quelle est la probabilité que le point M appartienne au domaine D?

Exercice nº 5

Soit f l'application numérique définie par : $f(x) = \frac{x^2 + x + 1}{x + 1}$

- 1. Etudier les variations de *f*.
- 2. On considère la suite (u_n) de nombres réels définie par : $u_0 > 0$ et $u_{n+1} = f(u_n)$.

Etudier la convergence de cette suite (u_n) .

- 3. Calculer $\int_{0}^{1} f(x) dx$
- 4. Calculer $\lim_{x \to +\infty} \int_{1}^{x} (f(t)-t) dt$
- 5. Trouver une fonction g continue telle que $\lim_{x\to +\infty} \int_{-t}^{x} (g(t)-t) dt$ soit finie.

Exercice n° 6

Pour tout entier naturel n, on pose : $I_n = \int_1^e (Lnt)^n dt$, où Ln désigne le logarithme népérien.

- 1. Calculer I_0 et I_1
- 2. Pour tout $n \ge 1$, trouver une relation de récurrence entre I_n et I_{n-1}
- 3. Pour tout $n \ge 2$, trouver une relation de récurrence entre I_n et I_{n-2}
- 4. Etudier la convergence de la suite (I_n)

Exercice nº 7

Soit
$$f:]-1,1[\rightarrow R \text{ définie par} : f(x) = (x^2 - 1) Ln(\frac{1+x}{1-x})$$

- 1. Donner un développement limité de f, d'ordre 3, au voisinage de 0.
- 2. Montrer que f admet une tangente T au point d'abscisse 0, donner son équation et la position du graphe de f par rapport à T.
- 3. Déterminer $\lim_{x \to 1^{-}} f(x)$