ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN

AVRIL 2001

CONCOURS D'ELEVE INGENIEUR DES TRAVAUX STATISTIQUES

VOIE B Option Mathématiques

PREMIERE EPREUVE DE MATHEMATIQUES

DUREE: 4 HEURES

EXERCICE n° 1

Notation : Dans l'exercice ,on notera $\int f(x)dx$ l'ensemble des primitives de f (x) sur l'intervalle I donné

Soit
$$I_n(x) = \int \frac{dx}{\cos^n x}$$
, $n \in N$ une fonction définie sur $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$

- I- Calculer la dérivée de la fonction de la variable réelle x définie sur I par $f(x) = \ln \left| \tan(\frac{x}{2} + \frac{\pi}{4}) \right|$
- **II-** Calculer $I_0(x)$, $I_1(x)$, $I_2(x)$
- III- A l'aide d'une intégration par parties , établir une relation de récurrence entre $I_n(x)$ et $I_{n-2}(x)$

IV- En déduire $I_3(x)$

PROBLEME I

- **I-** Former le développement limité, à l'ordre 3 quand x tend vers 0 de : $e^x \tan x$
- II- On considère la fonction f définie sur $I = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ par $f(x) = e^x \tan x$
 - 1-Montrer que sur I, f est indéfiniment dérivable et f'(x) toujours positif.
 - **2-**En déduire que f admet une fonction réciproque notée g (t) indéfiniment dérivable sur R et admettant des développements limités de tous ordres lorsque t tend vers 0.
 - **3-**Former le développement de g à l'ordre 3

- III- Soit n un entier naturel.
 - **1-**Montrer que sur l'intervalle $\left[n\pi \frac{\pi}{2}; n\pi + \frac{\pi}{2}\right]$, l'équation $e^x \tan x = 1$ admet une racine et une seule que l'on notera $n\pi + \alpha_n$.
 - **2-**Exprimer α_n à l'aide de la fonction définie ci-dessus.
 - **3-Montrer que** $\alpha_n \approx e^{-n\pi}$ quand $n \to \infty$

On pose
$$\beta_n = e^{2n\pi} (\alpha_n - e^{-n\pi})$$
.

- **4-**Montrer que β_n a une limite finie l que l'on calculera .Trouver un équivalent de $\beta_n l$
- **IV-** Plus généralement, soit f une fonction indéfiniment dérivable sur un intervalle I=]a,b[, a<0
b et telle que f(0)=0 et $f'(0) \neq 0$.
 - **1-**Montrer que f admet , sur un intervalle $J = \alpha; \beta$, une fonction réciproque g et que cette dernière admet des développements limités de tous ordres au voisinage de 0.
 - **2-**Indiquer une méthode permettant d'obtenir le développement limité à l'ordre n de g(t), connaissant celui de f(x) au même ordre n.

PROBLEME II

- I- Soit $(u_n)_{n\geq 1}$ la suite définie par la relation de récurrence $u_{n+1}=u_n-2u_n^3$ où u_1 est donné avec $0< u_1<\frac{1}{\sqrt{2}}$.
 - **1-**Montrer que pour tout n>0, on a : $0 < u_n < \frac{1}{\sqrt{2}}$
 - **2-**Montrer que la suite $(u_n)_{n\geq 1}$ est convergente et trouver sa limite.
- II- On considère la suite $(u_n)_{n\geq 1}$ définie par : $v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$ pour n>0.
 - **1-**Montrer que la suite de terme général $V_n = v_1 + v_2 + \dots + v_n$ tend vers $+ \infty$.
 - **2-**Montrer que $v_n \le \frac{2}{1-2u_1^2}u_n$ et en déduire le comportement de la suite de terme général $S_n = u_1 + u_2 +u_n$
- III- Montrer que la suite $(w_n)_{n\geq 1}$ définie par : $w_n = \frac{1}{u_{n+1}^2} \frac{1}{u_n^2}$ converge vers 4.
- IV1-Montrer que si une suite $(a_n)_{n\geq 1}$ converge vers une limite 1, la suite $(b_n)_{n\geq 1}$ définie par : $b_n = \frac{1}{n}(a_1 + a_2 + \dots + a_n) \text{ converge aussi vers 1.}$
 - **2-**En déduire que $\lim_{n\to\infty} 2\sqrt{n}.u_n = 1, (\Leftrightarrow u_n \approx \frac{1}{2\sqrt{n}})$