AVRIL 2004

CONCOURS INGENIEUR DES TRAVAUX STATISTIQUES

ITS Voie B OPTION Mathématiques

CORRIGE DE LA 1ère COMPOSITION DE MATHEMATIQUE

Exercice 1

1) f(t) est continûment infiniment différentiable sur $\mathbb{R}\setminus\{0\}$. Comme sin(t)= $t + O(t^2)$ pour $t \to 0$, f(t) peut se prolonger par continuité en 0 en posant f(0) = 01. Ainsi définie f(t) est continue dérivable sur \mathbb{R} de dérivée

$$f^{(1)}(t) = \frac{t\cos(t) - \sin(t)}{t^2}, \ t \in \mathbb{R} \setminus \{0\}$$
$$f^{(1)}(0) = 0$$

f(t) est paire donc il suffit de l'étudier sur $[0, 2\pi]$. Sur $[0, 2\pi]$, $t\cos(t)-\sin(t)$ s'annule pour t=0 et de façon unique sur $]0,2\pi]$ en $t_0\neq 0$ tel que $\tan(t_0)=t_0$ $(t_0\simeq$ 4.49) d'où le tableau de variation

t	-2π		$-t_0$		0		t_0		2π
$f^{(1)}(t)$		_	0	+	0	_	0	+	
f(t)	0	\	$\cos(t_0)$	/ 1	$\searrow \cos$	(t_0)	$\nearrow 0$		

avec $\cos(t_0) \simeq -0.22$.

2) a) D'après ce qui précède l'intégrale est faussement impropre en 0. Par ailleurs on a clairement $\left|\frac{\sin(t)}{t}\right| \le 1$ d'où

$$|g(x)| = |\int_{x}^{x^{2}} f(t)dt| \le x^{2} + |x| \to 0 \text{ quand } x \to 0.$$

On en déduit immédiatement la continuité et la différentiabilité de g sur \mathbb{R} . b) On a par intégration par partie $(u(t) = \frac{1}{t}$ et $v^{(1)}(t) = \sin(t)$, x étant supposé strictement positif tous les termes sont bien définis)

$$\int_{x}^{x^{2}} \frac{\sin(t)}{t} dt = \left[-\cos(t)/t\right]_{x}^{x^{2}} - \int_{x}^{x^{2}} \frac{\cos(t)}{t^{2}} dt$$

1

On en déduit

$$\begin{split} |\int_{x}^{x^{2}} \frac{\sin(t)}{t} dt| &\leq \frac{1}{x} + \frac{1}{x^{2}} + |\int_{x}^{x^{2}} \frac{\cos(t)}{t^{2}} |dt| \\ &= \frac{1}{x} + \frac{1}{x^{2}} + |h(x)| \\ &\leq \frac{1}{x} + \frac{1}{x^{2}} + \int_{x}^{x^{2}} \frac{|\cos(t)|}{t^{2}} dt \\ &\leq \frac{1}{x} + \frac{1}{x^{2}} + \int_{x}^{x^{2}} \frac{1}{t^{2}} dt \\ &= \frac{2}{x}. \end{split}$$

On en conclue que $\lim_{x\to\infty}(g(x))=0$.

c) Par composition, la dérivée de g(x) vaut

$$g^{(1)}(x) = 2x \frac{\sin(x^2)}{x^2} - \frac{\sin(x)}{x} = \frac{1}{x} (2\sin(x^2) - \sin(x)).$$

Pour $x \to 0$, on a $g^{(1)}(x) \to -1$ et $g^{(1)}$ se prolonge par continuité en 0.

Exercice 2

a) On a par un développement limité élémentaire pour u petit positif

$$\tan(u) \le u + u^3$$

d'où le résultat.

b) On a

$$\phi^{(1)}(x) = \tan(x)^2 \ge 0$$

et $\phi^{(1)}(x)=0$ seulement en x=0. On en déduit que ϕ est continue, strictement croissante de] $-\pi/2, -\pi/2[$ dans] $-\infty, \infty[$. Comme $\lim_{x\to\pi/2}(\phi(x))=+\infty$ et $\lim_{x\to-\pi/2}(\phi(x))=-\infty, \phi$ est bijective d'où l'existence de $\psi(x)=\phi^{-1}(x)$, qui de plus est continue.

c) On remarque que ϕ est impaire donc ψ est impaire. Par ailleurs ψ est croissante nulle en 0. On en déduit que

$$u_n = (-1)^n \psi(\frac{1}{n})$$

où $\psi(\frac{1}{n})$ est une suite décroissante vers 0. Par continuité de ψ , nulle en 0, u_n et v_n convergent vers 0.

d) D'après c) et le théorème sur les suites alternées, la série $\sum_{n=1}^{\infty} u_n$ est convergente.

D'après a) on a

$$\phi(x) < x^3$$

Donc par croissance de ψ ,

$$x \le \psi(x^3)$$

On en déduit que

$$v_n \ge \frac{1}{n}$$

donc la série $\sum_{n=1}^{\infty} v_n$ est divergente.

e) Un contre-exemple montrant qu'il ne faut pas permuter les sommes doubles!!!

Pour $n \ge 1$ fixe on a d'après les résultats classiques sur les séries géométriques

$$\sum_{m=1}^{\infty} u_{n,m} = \frac{1}{n+1} \sum_{m=1}^{\infty} \left(\frac{n}{n+1}\right)^m - \frac{1}{n+2} \sum_{m=1}^{\infty} \left(\frac{n+1}{n+2}\right)^m$$
$$= \frac{1}{n+1} \frac{n}{n+1} \frac{1}{1 - \frac{n}{n+1}} - \frac{1}{n+2} \frac{n+1}{n+2} \frac{1}{1 - \frac{n+1}{n+2}}$$
$$= \frac{n}{n+1} - \frac{n+1}{n+2}$$

On en déduit que pour tout N > 0

$$\sum_{n=1}^{N} \left(\frac{n}{n+1} - \frac{n+1}{n+2} \right) = \frac{1}{2} - \frac{N+1}{N+2}$$

Donc la série $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} u_{n,m}$ est convergente et vaut $\frac{1}{2} - 1 = -\frac{1}{2}$. Maintenant, à m fixe on a pour tout N > 0,

$$\sum_{n=1}^{N} u_{n,m} = \frac{1}{2} (\frac{1}{2})^m - \frac{1}{N+2} (\frac{N+1}{N+2})^m$$

d'où

$$\sum_{n=1}^{\infty} u_{n,m} = \frac{1}{2^{m+1}}$$

On en déduit toujours en utilisant les propriétés des suites géométriques

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{n,m} = \sum_{m=1}^{\infty} \frac{1}{2^{m+1}} = \frac{1}{4} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2}.$$

D'où

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{n,m} = -\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} u_{n,m} = \frac{1}{2}.$$

Problème

Préliminaire:

L'inégalité est clairement vraie pour n=0!

Maintenant supposons qu'elle est vraie pour n, on a

$$|\sin((n+1)t)| \le |\sin(nt)||\cos(t)| + |\sin(t)||\cos(nt)|$$

 $\le |\sin(nt)| + |\sin(t)|$

soit en utilisant la relation pour n,

$$|\sin((n+1)t)| \le n|\sin(t)| + |\sin(t)| = (n+1)|\sin(t)|.$$

On note également que l'inégalité est stricte pour $n \ge 2$ et pour $t \in]0, \pi/2[$. Pour $x = \frac{\pi}{2n}$ on obtient

$$1=|\sin(n\frac{\pi}{2n})|\leq n|\sin(\frac{\pi}{2n})|=n\sin(\frac{\pi}{2n})$$

d'où l'inégalité

$$\sin(\frac{\pi}{2n}) \ge \frac{1}{n}.$$

Première partie

1) a) On a de façon évidente sur [-1,1]

$$T_0(x) = \cos(0) = 1$$
 et
 $T_1(x) = \cos(\arccos(x)) = x$.

b) Posons t = arccos(x) alors x = cos(t).

On a alors

$$T_{n+2}(x) + T_n(x) = \cos((n+2)t) + \cos(nt)$$

= $2\cos((n+1)t)\cos(t)$
= $2xT_{n+1}(x)$

et la relation de récurrence

(I)
$$T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x)$$

s'ensuit.

c) On en déduit immédiatement par récurrence que T_n est dans P_n . De même, soit l'hypothèse H(n): T_n est un polynôme de degré n ayant pour coefficient dominant 2^{n-1} .

On a clairement H(1). Par ailleurs en utilisant (I), $T_2(x) = 2x^2 - 1$ donc H(2) est vérifiée, supposant H(n) et H(n+1), on déduit de la relation de récurrence (I), que T_{n+2} est un polynôme de degré n+1 et de coefficient dominant $2 \cdot 2^{n-1} = 2^n$.

d) On a par un calcul immédiat

$T_0(x) = 1$	
	$U_0(x) = 1$
$T_2(x) = 2x^2 - 1$	$U_1(x) = 2x$
$T_3(x) = 4x^3 - 3x$	$U_2(x) = 4x^2 - 1$
$T_4(x) = 8x^4 - 8x^2 + 1$	$U_3(x) = 8x^3 - 4x$
$T_5(x) = 16x^5 - 20x^3 + 5x$	$U_4(x) = 16x^4 - 12x^2 + 1$

2) Par définition, les 0 de T_n sont les solutions de

$$n \arccos(x) = \frac{\pi}{2}(\pi)$$

pour x dans [0,1]. On vérifie aisément que, pour k=0,...,n-1,

$$\alpha_{k,n} \in [0,1] \text{ et } T_n(\alpha_{k,n}) = 0.$$

Comme cos est strictement décroissant sur $[0, \pi]$, on a également

$$\alpha_{0,n} < \alpha_{1,n} < \alpha_{2,n} < \dots < \alpha_{n-1,n}$$

donc les $\alpha_{k,n}$, k=0,...,n-1 sont n racines distinctes du polynôme T_n . Comme T_n est de degré n, ce sont les seules possibles.

3) D'après 1) T_{n+1} est un polynôme de degré n+1 donc U_n qui est sa dérivée à une constante près est un polynôme de degré n. Son coefficient est donc

$$(n+1)2^n/(n+1) = 2^n$$
.

Par ailleurs, on a

$$T_{n+1}(\cos(t)) = \cos((n+1)t)$$

d'où

$$-\sin(t)T_{n+1}^{(1)}(\cos(t)) = -(n+1)\sin((n+1)t)$$

et

$$U_n(\cos(t)) = \frac{\sin((n+1)t)}{\sin(t)},$$

pour $t \neq k\pi$, $k \in \mathbb{Z}$.

4) Pour $x \in]-1,1[$, on a

$$T_n^{(1)}(x) = \frac{n}{\sqrt{1 - x^2}} \sin(n \arccos(x))$$

donc

$$\sqrt{1-x^2} T_n^{(1)}(x) = n \sin(n \arccos(x)),$$

soit par dérivation

$$\sqrt{1-x^2} T_n^{(2)}(x) - \frac{x}{\sqrt{1-x^2}} T_n^{(1)}(x) = -\frac{n^2}{\sqrt{1-x^2}} \cos(n\arccos(x))$$

et donc

$$(1 - x^2)T_n^{(2)}(x) - xT_n^{(1)}(x) = -n^2T_n(x).$$

Comme T_n est un polynôme , il est infiniment continûment différentiable donc cette relation est aussi valide sur [-1,1].

L'équation différentielle en U_n se déduit simplement par différentiation de cette relation : on obtient

$$(1 - x^2)U_n^{(2)}(x) - 3xU_n^{(1)}(x) + n(n+2)U_n(x) = 0.$$

5) Comme $\frac{1}{\sqrt{1-x^2}}$ est intégrable en -1 et 1, toutes les intégrales sont faussement impropres. Plus précisément pour $k \in \mathbb{N}, \ l \in \mathbb{N}$ et $-1 < \alpha < \beta < 1$, posons

$$I_{k,l}(\alpha,\beta) = \int_{\alpha}^{\beta} \frac{1}{\sqrt{1-x^2}} T_k(x) T_l(x) dx.$$

On a par changement de variable,

$$I_{k,l}(\alpha,\beta) = \int_{\arccos(\alpha)}^{\arccos(\beta)} \cos(kt)\cos(lt)dt$$

donc $I_{k,l} = \lim_{\substack{\alpha \to 0 \\ \beta \to \pi}} I_{k,l}(\alpha,\beta)$ est parfaitement définie et vaut

$$I_{k,l} = \int_0^{\pi} \cos(kt) \cos(lt) dt.$$

Si $k \neq l$, on a aussi k + l > 0 et donc

$$I_{k,l} = \frac{1}{2} \int_0^{\pi} \cos((k+l)t)dt + \frac{1}{2} \int_0^{\pi} \cos((k-l)t)dt = 0.$$

Maintenant pour $k = l \neq 0$, on a

$$I_{k,k} = \int_0^{\pi} \cos(kt)^2 dt = \frac{1}{2} \int_0^{\pi} (1 + \cos(2kt)) dt = \frac{\pi}{2}.$$

Enfin

$$I_{0,0} = \pi$$
.

On en déduit que tous les polynômes sont orthogonaux pour ce produit scalaire.

6) Si, l'on pose

$$E_0(x) = \frac{T_0(x)}{\pi}$$

 et

$$E_k(x) = 2\frac{T_k(x)}{\pi}, \ k = 1, ..., n,$$

 (E_0, E_1, E_n) est alors une base orthonormée de P_n^0 pour $<...>_M$.

Deuxième partie

1) Par définition, on a pour tout n,

$$|T_n(x)| \leq 1$$

et $T_n(1) = 1$ donc $||T_n|| = 1$. Pour $n \ge 1$, cette valeur est atteinte ssi

$$n \arccos(x) \in \pi \mathbb{Z} \cap [0, n\pi] \iff arc\cos(x) \in \{0, \frac{\pi}{n}, \frac{2\pi}{n}, \dots, \pi\}$$

$$\iff x \in \{1, \cos(\frac{\pi}{n}), \dots, \cos(\frac{k\pi}{n}), \dots, -1\}$$

D'après 3) on a

$$U_n(\cos(t)) = \frac{\sin((n+1)t)}{\sin(t)}$$

donc en utilisant le préliminaire

$$||U_n|| \le (n+1)$$

et on note que $|U_n(1)| = |U_n(-1)| = (n+1)$ donc

$$||U_n|| = (n+1).$$

En utilisant la remarque que l'inégalité du préliminaire est stricte en dehors des point terminaux, on en déduit que les seuls points atteignant le maximum sont $\{-1,1\}$.

2) Comme suggérer dans l'énoncé, considérons $log(T_n(x))$. D'après la partie précédente T_n est un polynôme de degré n de racine $\alpha_{k,n},\ k=0,...,n-1$, d'où à un constante C près, en prenant le log complexe,

$$\log(T_n(x)) = C + \sum_{k=0}^{n-1} \log(x - \alpha_{k,n})$$

et par dérivation

$$\frac{T_n^{(1)}(x)}{T_n(x)} = \sum_{k=0}^{n-1} \frac{1}{x - \alpha_{k,n}}$$

d'où

$$\sum_{k=0}^{n-1} \frac{T_n(x)}{x - \alpha_{k,n}} = nU_{n-1}.$$

Cette égalité est vrai pour tout $x \in [-1,1]$ par prolongement par continuité aux points $\alpha_{k,n}$. On en déduit

$$\left| \sum_{k=0}^{n-1} \frac{T_n(x)}{x - \alpha_{k,n}} \right| \le n ||U_{n-1}|| = n^2.$$

3) On a par un résultat classique l'expression suivante du polynôme d'interpolation de Lagrange d'ordre \boldsymbol{k}

$$L_{k,n-1}(x) = \frac{\prod_{j \neq k} (x - \alpha_{j,n})}{\prod_{j \neq k} (\alpha_{k,n} - \alpha_{j,n})}.$$

On vérifie directement que $L_{k,n-1}$ est un polynôme de degré n-1, et est tel que $L_{k,n-1}(\alpha_{k,n})=\frac{\prod_{j\neq k}(\alpha_{k,n}-\alpha_{j,n})}{\prod_{j\neq k}(\alpha_{k,n}-\alpha_{j,n})}=1$ et $L_{k,n-1}(\alpha_{j,n})=0,\ j\neq k$.

D'après ce qui précède on a

$$T_n(x) = 2^n \prod_{j=1}^n (x - \alpha_{j,n})$$

= $(x - \alpha_{k,n}) 2^n \frac{\prod_{j \neq k} (x - \alpha_{j,n})}{\prod_{j \neq k} (\alpha_{k,n} - \alpha_{j,n})} \prod_{j \neq k} (\alpha_{k,n} - \alpha_{j,n}),$

d'où

$$\frac{T_n(x)}{(x-\alpha_{k,n})} = 2^n \Pi_{j\neq k} (\alpha_{k,n} - \alpha_{j,n}) L_{k,n-1}(x),$$

soit en posant $\lambda_{k,n} = 2^n \prod_{j \neq k} (\alpha_{k,n} - \alpha_{j,n})$

$$\frac{T_n(x)}{(x-\alpha_{k,n})} = \lambda_{k,n} L_{k,n-1}(x),$$

soit $\frac{T_n(x)}{(x-\alpha_{k,n})}$ est proportionnel au polynôme d'interpolation de Lagrange d'ordre k. 4)L'égalité précédente donne

$$T_n(x) = \lambda_{k,n}(x - \alpha_{k,n})L_{k,n-1}(x)$$

soit par dérivation

$$T_n^{(1)}(x) = \lambda_{k,n} L_{k,n-1}(x) + \lambda(x - \alpha_{k,n}) L_{k,n-1}^{(1)}(x)$$

donc

$$T_n^{(1)}(\alpha_{k,n}) = \lambda_{k,n} L_{k,n-1}(\alpha_{k,n}) + 0$$
$$= \lambda_{k,n}$$

ce qui prouve la première égalité.

Par ailleurs par définition de T_n

$$T_n^{(1)}(\cos(x))\sin(x) = n\sin(nx),$$

soit d'après I.2 pour $\alpha_{k,n} = \cos(\frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi))$ (en posant $x = \frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi)$),

$$T_n^{(1)}(\alpha_{k,n})\sin(\frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi))$$

= $n\sin(\frac{\pi}{2} + (n-1-k)\pi) = n(-1)^{k-n+1}$.

Par ailleurs comme $\sin(\frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi)^2 + \cos(\frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi)^2) = 1$ et $\frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi \in [0,\pi]$ on a

$$\sin(\frac{1}{n}(\frac{\pi}{2} + (n-1-k)\pi)) = \sqrt{1-\alpha_{k,n}^2}$$

et on en déduit

$$T_n^{(1)}(\alpha_{k,n}) = \frac{n(-1)^{k-n+1}}{\sqrt{1-\alpha_{k,n}^2}}.$$

5) Soit P une polynôme dans P_{n-1}^{0} . D'après 3) il se décompose dans la base des polynômes d'interpolation de Lagrange sous la forme,

$$P(x) = \sum_{j=0}^{n-1} a_j L_{j,n-1}(x),$$

avec $P(\alpha_{k,n}) = \sum_{k=0}^{n-1} a_j L_{j,n-1}(\alpha_{k,n}) = a_k$. On déduit de 3) que

$$P(x) = \sum_{i=0}^{n-1} P(\alpha_{k,n}) \lambda_{k,n}^{-1} \frac{T_n(x)}{(x - \alpha_{k,n})}$$

avec en utilisant les égalités du 4)

$$\lambda_{k,n} = \frac{n(-1)^{k-n+1}}{\sqrt{1 - \alpha_{k,n}^2}}.$$

d'où la décomposition

$$P(x) = n^{-1} \sum_{i=0}^{n-1} (-1)^{k-n+1} P(\alpha_{k,n}) \sqrt{1 - \alpha_{k,n}^2} \frac{T_n(x)}{(x - \alpha_{k,n})}.$$

6) En utilisant l'égalité du 5) on a pour $x \in [-1, 1]$,

$$|P(x)| \le \frac{1}{n} \sum_{k=0}^{n-1} \left| \frac{T_n(x)}{(x - \alpha_{k,n})} \right|.$$

On ne peut directement utiliser l'inégalité 2) à cause de la valeur absolue à l'intérieure de la somme.

Il suffit cependant de remarquer que si $x\in]\alpha_{n-1,n},1]$ alors $\frac{T_n(x)}{(x-\alpha_{k,n})}\geq 0$ (car alors $x\geq \cos(\frac{\pi}{2n})$) donc

$$|P(x)| \le \frac{1}{n} \sum_{k=0}^{n-1} \frac{T_n(x)}{(x - \alpha_{k,n})} \le \frac{1}{n} n^2 = n,$$

d'après l'inégalité 2).

De même pour $x \in [-1, \alpha_{0,n}]$ on a également $\frac{T_n(x)}{(x-\alpha_{k,n})} \ge 0$ et la même inégalité s'ensuit.

Enfin pour $x \in [\alpha_{0,n}, \alpha_{n-1,n}]$ on a par définition de $\alpha_{0,n}, \alpha_{n-1,n},$

$$\sqrt{1-x^2} \ge \sin(\frac{\pi}{2n}),$$

soit en utilisant l'inégalité du préliminaire

$$\sqrt{1-x^2} \ge \frac{\pi}{2n} \frac{2}{\pi} = \frac{1}{n},$$

donc par hypothèse sur P

$$|P(x)| \le \frac{1}{\sqrt{1-x^2}} \le n.$$

D'où l'inégalité voulue en recollant les intervalles.