ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA-ABIDJAN

AVRIL 2013

CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie B Option Mathématiques

1^{ère} Composition de Mathématiques (Durée de l'épreuve : 4 heures)

Définitions et notations

On désigne par \mathbb{R} l'ensemble des nombres réels. Si $A \subset B$ sont deux parties de \mathbb{R} , on note par $B \setminus A$ le complémentaire de A dans B. On désigne par \mathbb{N} l'ensemble des entiers naturels, par \mathbb{Z} l'ensemble des entiers relatifs et par $\mathbb{Z}_- = \{k \in \mathbb{Z} : k \leq 0\}$.

On admettra le développement suivant de la fonction Cotangente :

$$\forall x \in]0, \pi[, \quad \cot(x) = \frac{\cos x}{\sin x} = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - \pi^2 n^2}.$$

Première partie.

- 1- Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite réelle définie par $u_n(x)=\ln\left(1-\frac{x^2}{n^2}\right),\ n\geq 1,$ où ln désigne le logarithme népérien.
 - a) Montrer que la série de fonctions de terme général $u_n(x)$, converge simplement sur [0,1[.
 - **b)** Montrer que la série dérivée de terme général $u_n'(x)$ converge normalement sur tout segment $[0,a] \subset [0,1[$.
 - c) Montrer que la fonction $F(x) = \sum_{n=1}^{+\infty} u_n(x)$ est de classe C^1 sur [0,1[et $F'(x) = \pi \cot(\pi x) \frac{1}{x}$.
 - **d)** Montrer que $\sum_{n=1}^{+\infty} u_n(x) = \ln \frac{\sin \pi x}{\pi x}$, pour tout $x \in [0, 1[$.
- **2-** Soit $(s_n)_{n\in\mathbb{N}}$ la suite de fonctions définies pour tout $x\in\mathbb{R}$ par la récurrence :

$$s_0(x) = x,$$
 $s_n(x) = \left(1 - \frac{x^2}{n^2}\right) s_{n-1}(x)$ pour tout $n \in \mathbb{N}^*$.

- a) Montrer que la suite de fonctions $(s_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} . Nous noterons s sa limite.
- **b)** Soit $x \in \mathbb{R}$.
 - (i) Montrer que $s_n(x) = \frac{x}{(n!)^2} \prod_{k=1}^n (k-x)(k+x)$.
 - (ii) Montrer que pour tout $n \in \mathbb{N}$, tel que n > |x| on a $s_n(x+1) = \frac{x+n+1}{x-n} s_n(x)$.

1

- (iii) En déduire que s(x+1) = -s(x) pour tout $x \in \mathbb{R}$.
- c) Calculer s(x) pour tout $x \in [0,1[$. En déduire que pour tout $x \in \mathbb{R}$ on a $s(x) = \frac{\sin \pi x}{\pi}$.

Deuxième partie.

On considère la suite $(f_n)_{n\in\mathbb{N}^*}$ de fonctions définies pour tout $x\in\mathbb{R}$ par :

$$f_n(x) = \frac{n^{-x}}{(n-1)!}x(x+1)\dots(x+n-1) = \frac{n^{-x}}{(n-1)!}\prod_{k=0}^{n-1}(x+k).$$

- **1-** Soit $p \in \mathbb{N}$. Déterminer $\lim_{n \to +\infty} f_n(-p)$.
- **2-** On suppose que $x \in \mathbb{R} \setminus \mathbb{Z}_-$.
 - a) Montrer qu'il existe $N_x \in \mathbb{N}$, tel que la série de terme général $\ln \frac{f_{n+N_x+1}(x)}{f_{n+N_x}(x)}$ converge.
 - **b)** Montrer que la suite $(f_n(x))_{n\in\mathbb{N}^*}$ converge vers une limite non nulle f(x).
 - c) Déterminer f(x) en fonction de x, N_x et $S(x) = \sum_{n \ge N_x} \ln \frac{f_{n+1}(x)}{f_n(x)}$.
 - **d)** Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = xf(x+1).
 - e) Calculer f(1) et en déduire f(n) pour tout $n \in \mathbb{N}^*$.
- **3-** Montrer que pour tout $x \in \mathbb{R}$ on a $f(x)f(1-x) = \frac{\sin \pi x}{\pi}$. On pourra calculer, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ le produit $f_n(x)f_n(1-x)$ en fonction de $s_n(x)$.
- **4-** On se propose dans cette question de montrer que pour tout $x \in \mathbb{R}$ et tout $p \in \mathbb{N}^*$ on a la relation :

$$f(px) = (2\pi)^{\frac{p-1}{2}} p^{-px+\frac{1}{2}} \prod_{k=0}^{p-1} f\left(x + \frac{k}{p}\right). \tag{*}$$

- a) (i) Vérifier que la relation (*) est satisfaite pour p = 1.
 - (ii) Supposons que $p \ge 2$ et $px = -n \in \mathbb{Z}_+$, montrer que la relation (*) est vérifiée.
- b) On suppose que $px \in \mathbb{R} \setminus \mathbb{Z}_+$. Soit n un élément quelconque de \mathbb{N}^* . Montrer que $\frac{p^{px-1}f_{pn}(px)}{\displaystyle\prod_{k=0}^{p-1}f_n\left(x+\frac{k}{p}\right)}$

ne dépend pas de x. En déduire que f vérifie une relation du type :

$$f(px) = A_p p^{-px+1} \prod_{k=0}^{p-1} f\left(x + \frac{k}{p}\right),$$

où A_p est un nombre réel positif ou nul dépendant de p.

c) En écrivant pour $x = \frac{1}{p}$ la relation ci-dessus, montrer que :

$$A_p \prod_{k=1}^{p-1} f\left(\frac{k}{p}\right) = A_p \prod_{k=1}^{p-1} f\left(1 - \frac{k}{p}\right) = 1.$$

En déduire que

$$A_p^2 = \frac{\pi^{p-1}}{\prod\limits_{k=1}^{p-1} \sin \frac{k\pi}{p}}.$$

d) Montrer l'identité suivante entre fonctions polynômes de la variable réelle x:

$$(x^{p-1} + x^{p-2} + \dots + x + 1)^2 = \prod_{k=1}^{p-1} \left(x^2 - 2x \cos \frac{2k\pi}{p} + 1 \right).$$

e) En donnant à x la valeur 1, en déduire les valeurs de $\prod_{k=1}^{p-1} \sin \frac{k\pi}{p}$ et de A_p , ainsi que la relation (*).

Troisième partie.

Soit Γ la fonction de la variable réelle x définie par

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

- 1- Déterminer le domaine de définition \mathcal{D} de Γ et montrer que Γ est indéfiniment dérivable sur \mathcal{D} .
- **2-** Pour tout $x \in]0, +\infty[$ et tout $n \in \mathbb{N}^*$ on pose

$$G_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

- a) On pose $g_n(x) = \int_0^1 (1-u)^n u^{x-1} du$. Déterminer une relation entre $g_n(x)$ et $g_{n-1}(x+1)$ et en déduire l'expression de $g_n(x)$ en fonction de x et n.
- b) Montrer que

$$G_n(x) = \frac{n}{(n+x)f_n(x)}.$$

c) Montrer que pour tout $t \in [0, n]$ on a les inégalités

$$e^{-t} \ge \left(1 - \frac{t}{n}\right)^n$$
 et $e^t \ge \left(1 + \frac{t}{n}\right)^n$.

En déduire que l'on a

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le e^{-t} \left[1 - \left(1 - \frac{t^2}{n^2}\right)^n\right]$$

pour tout $t \in [0, n]$.

d) Montrer, par récurrence sur n, que l'on a $(1-a)^n \ge 1-na$ pour tout $a \in [0,1]$ et tout $n \in \mathbb{N}^*$. En déduire que pour tout $t \in [0,n]$ on a les inégalités :

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{t^2 e^{-t}}{n}.$$

e) Déduire de ce qui précède que $\lim_{n\to+\infty}G_n(x)=\Gamma(x)$ pour tout $x\in]0,+\infty[$. Exprimer f(x) en fonction de $\Gamma(x)$ pour $x\in]0,+\infty[$.