DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DE L'EMPLOYABILITE (DGESE)

Concours GE2I/GMEC session 2015

Composition : Mathématiques 3 (algèbre)

Durée : 4 Heures

Ce sujet comporte un exercice et un problème avec deux parties indépendantes

EXERCICE

Soit IK un sous-corps de IR et f un isomorphisme du corps IR sur le corps IK. **1-**Montrer que, pour tout x de IR₊, $f(x) = [f(\sqrt{x})]^2$. En déduire que f est croissante.

- **2-a)** Montrer que, pour tout (n,x) de $IN \times IR$, f(nx) = nf(x).
 - **b)** Montrer que pour tout rationnel x, f(x) = x.
- **3-**Montrer que f est l'application identité de IR dans IR. (on pourra utiliser la densité de Q dans IR. Attention : f n'est pas dite continue).

Problème

Partie 1

On munit l'espace IR³ de son produit scalaire canonique et on l'oriente de telle sorte que sa base canonique (i, j, k) soit orthonormale directe.

Pour u = (a, b, c) de IR³ on définit la matrice
$$M_u = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

et f_u l'endomorphisme de IR^3 de matrice M_u dans la base (i, j, k). On note ${\cal M}$ l'ensemble des matrices M_u , $u \in IR^3$ et \mathcal{V} l'ensemble des endomorphismes f_u , $u \in IR^3$.

A.

1-Montrer que \mathcal{M} et \mathcal{V} sont des espaces vectoriels .Quelles sont leurs dimensions ?

2-Soit u = (a, b, c) et v = (x, y, z). Calculer $M_u M_v$ et montrer que $M_u M_v \in \mathcal{M}$.

En déduire que \mathcal{M} est une algèbre. Est-elle commutative ?

- **3-**On note $w_1 = \frac{1}{\sqrt{3}}(i + j + k)$.
 - i) Montrer que w_1 est un vecteur propre commun à tous les f_u .
 - ii) Soit \mathcal{P} le plan orthogonal à w_1 . On note $w_2 = \frac{1}{\sqrt{2}}(i-j)$ et $w_3 = \frac{1}{\sqrt{6}}(i+j-2k)$. Montrer que (w_2, w_3)

 w_3) est une base orthonormale de \mathcal{P} et $\mathcal{B}'=(w_1, w_2, w_3)$ est une base orthonormale de \mathbb{R}^3 .

Donner la matrice de f_u dans cette base \mathcal{B}'

- iii) Montrer que \mathcal{P} est stable pour chaque $\mathfrak{f}_{\mathbf{u}^{\mathbf{a}}}$ portée de main
- **4-**Donner une condition nécessaire et suffisante pour que f_u soit diagonalisable dans IR.

В.

Soit $\Psi : u \mapsto f_u(u)$ de IR^3 dans IR^3 et $P_m(X) = X^3 - X^2 + m$ où m désigne un paramètre réel.

- **1-i)** Caractériser les éléments de $U = \Psi^{-1}(\{i\})$.
- ii) En déduire que M_u est une matrice orthogonale si et seulement si $u \in U$.
- **2-**Donner une condition nécessaire et suffisante sur m pour que P_m admette trois racines réelles (éventuellement confondues).
- **3-**Montrer que pour $u=(a,b,c)\in IR^3$, M_u est la matrice d'une rotation si et seulement si a, b et c sont les racines de P_m avec $m\in [0;\frac{4}{27}]$.
- **4-**Etudier f_u pour $u = (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})$ et donner ses éléments caractéristiques.

Partie 2

- **A** .On appelle \mathcal{F} l'ensemble des fonctions de]-1;1[dans IR de la forme $f(x)=\frac{p(x)}{1-x^3}$ où p désigne une fonction polynôme à coefficients réels de degré inférieur ou égal à 2.
- **1-**Montrer que \mathcal{F} est un espace vectoriel.
- **2-**Pour k=0, 1, 2 on note h_k l'application définie sur]-1; 1[par $h_k(x) = \frac{x^k}{1-x^3}$. Montrer que $\mathcal{B} = (h_0, h_1, h_2)$ est une base de \mathcal{F} .
- **3-**On note \mathcal{F}_1 l'ensemble des éléments de \mathcal{F} qui admettent une limite finie quand x tend vers 1 par valeurs inférieures. Montrer que \mathcal{F}_1 est un sous-espace vectoriel de \mathcal{F}_* . Quelle est sa dimension ? Montrer que les éléments de \mathcal{F}_1 peuvent être prolongés par continuité en des fonctions \mathcal{C}^{∞} sur [-1;1].
- **4-**Pour $x \in]-1;1[$ on note $g_0(x)=\frac{1}{(1-x)\sqrt{3}},$ $g_1(x)=\frac{1}{(1+x+x^2)\sqrt{2}}$ et $g_2(x)=\frac{1+2x}{(1+x+x^2)\sqrt{6}}$. Montrer que (g_1,g_2) est une base de \mathcal{F}_1 , que $\mathcal{B}_1=(g_0,g_1,g_2)$ est une base de \mathcal{F} et que la matrice de passage de \mathcal{B} à \mathcal{B}_1 est orthogonale.
- **B.** On considère l'ensemble \mathcal{S} des fonctions développables en série entière de rayon de convergence supérieur ou égal à 1.
- **1-i)** Montrer que h_0 , h_1 , h_2 sont des éléments de S et donner leur développement en série entière $\sum a_n x^n$.

- ii) Comparer a_{n+3} et a_n .
- **iii)** En déduire que \mathcal{F} est l'ensemble des éléments de \mathcal{S} dont le développement en série entière $\sum a_n x^n$ vérifie, pour tout $n \in IN$, $a_{n+3} = a_n$.
- **2-** On définit sur \mathcal{F} l'opération :

$$(f|g) = f(0)g(0) + f'(0)g'(0) + \frac{f''(0)g''(0)}{4}.$$

Montrer que ceci définit un produit scalaire sur \mathcal{F} et que \mathcal{B} et \mathcal{B}_1 sont des bases orthonormales de \mathcal{F} .

- **3-** Pour $f \in \mathcal{F}$ on définit g_f sur]-1;1[par $g_f(x) = \frac{f(x)-f(0)}{x}$ si $x \neq 0$ et l'on définit $g_f(0)$ en prolongeant par continuité.
 - i) Montrer que $g_f \in \mathcal{F}$.
- ii) On appelle φ l'application de \mathcal{F} dans \mathcal{F} qui à f fait correspondre g_f . Montrer que φ est une rotation et préciser son axe et son angle.
- iii) Soit $f \in \mathcal{F}_1$. Montrer que $\varphi(f) \in \mathcal{F}_1$. Déterminer les limites de $\varphi(g_1)(x)$ et $\varphi(g_2)(x)$ quand x tend vers 1 par valeurs inférieures.
- **C.** On considère l'ensemble des fonctions de classe C^{∞} sur]-1;1[qui vérifient l'équation différentielle

$$(1 - x^3)y''' - 9x^2y'' - 18xy' - 6y = 0$$
 (1)

- **1-** Chercher les solutions développables en série entière et montrer que ce sont des éléments de \mathcal{F} . Les a-t-on tous ?
- **2-** On cherche les solutions définies sur IR. Pour ceci, si g est une solution de (1) sur un intervalle I inclus dans IR\{1}, déterminer l'équation différentielle d'ordre 3 vérifiée par f, où $f(x)=(1-x^3)g(x)$. Déterminer f et déduire les solutions de (1) sur $]-\infty$; 1[et]1; $+\infty$ [. Etudier les prolongements des solutions en 1 et donner toutes les solutions définies sur IR.