REPUBLIQUE DE COTE D'IVOIRE Union - Discipline - Travail

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DE L'EMPLOYABILITE (DGESE)

BREVET DE TECHNICIEN SUPERIEUR / SESSION 2015

FILIERE INDUSTRIELLE: INFORMATIQUE - DEVELOPPEUR D'APPLICATION

EPREUVE :

MATHEMATIQUES GENERALES ET STATISTIQUES

Durée de l'épreuve : 3 Heures

Coefficient de l'épreuve : 3

EXERCICE 1

Soit p un entier naturel non nul.

On définit la fonction f_p sur l'intervalle] 0, +∞ [par

$$f_p(x) = \frac{\ln x}{x^p}$$
.

MA Sujets

On désigne par (C_p) la courbe représentative de f_p dans le plan muni d'un repère orthonormé (O, I, J) unité graphique le cm.

- 1) Calculer les limites de f_p à droite en 0 et en $+\infty$.
- 2) Soit f_p la fonction dérivée de f_p sur $]0, +\infty[$.
 - a) Démontrer que : $\forall x \in]0, +\infty[, f_p'(x) = \frac{(-p \ln x) + 1}{x^{p+1}}.$
 - b) En déduire les variations de f_p et dresser son tableau de variation.
- 3) Tracer dans le repère (O, I, J), les courbes (C2) et (C3).

4)

- a) Montrer que la fonction f_2 est décroissante sur $[2, +\infty]$
- b) En déduire que pour tout entier naturel k supérieur ou égal à 2,

l'on a:
$$f_2(k+1) \le \int_k^{k+1} f_2(t) dt \le f_2(k)$$
.

MA Sujets

5) On considère la suite (S_n) n≥2 définie par son terme général

$$S_n = \frac{\ln 2}{2^2} + \frac{\ln 3}{3^2} + \dots + \frac{\ln n}{n^2}$$
 où n est un entier naturel supérieur ou égal à 2.

- a) Démontrer que la suite $(S_n)_{n\geq 2}$ est croissante.
- b) En utilisant la question 4-b), démontrer que :

$$\forall n \geq 2$$
, $S_n - \frac{\ln 2}{2^2} \leq \int_2^n f_2(t) dt \leq S_n - \frac{\ln n}{n^2}$.

(On pourra remarquer que
$$\int_2^n f_2(t) dt = \sum_{k=2}^{n-1} \int_k^{k+1} f_2(t) dt$$
)

c) On admet que : $\forall n \ge 2$,

$$\frac{\ln n}{n^2} + \int_2^n f_2(t) dt \le S_n \le \frac{\ln 2}{2^2} + \int_2^n f_2(t) dt.$$

A l'aide d'une intégration par parties, démontrer que :

$$\int_{2}^{n} f_{2}(t) dt = -\frac{1}{n} (1 + \ln n) + \frac{1}{2} (1 + \ln 2).$$

- d) Montrer que pour $n \ge 2$, $S_n \le \frac{\ln 2}{2^2} + \frac{1}{2}(1 + \ln 2)$
- e) Déduire des questions 5-a) et 5-d) précédentes, que la suite (Sn) est convergente.

EXERCICE 2 MA Sujets

Soit m un nombre réel. On considère l'espace vectoriel IR^3 muni de sa base canonique $B = (e_1, e_2, e_3)$ et f_m l'endomorphisme de IR^3 défini par :

$$f_m(x, y, z) = [(4-m)x+2y ; x+(4-m)y+z ; x+y+(4-m)z]$$

On désigne par A_m la matrice de f_m relativement à la base B.

- 1. a) Déterminer la matrice A_m. (N.B.: Toute matrice plaquée ne sera pas prise en compte).
 - b) Démontrer que Dét $A_m = (m-3)^2 (6-m)$.
 - c) En déduire l'ensemble des valeurs de m pour lesquelles f_m n'est pas un automorphisme.
 - d) Déterminer les valeurs de $m \in IR$, pour lesquelles l'image de f_m notée I_m (f_m) vaut IR^3 .
- 2. On donne m = 3.
- a) Déterminer le noyau N₃ de l'endomorphisme f₃.
- b) Déterminer l'image Im f3 de f3.
- 3. On considère les vecteurs

$$u_1 = e_2 - e_3$$

 $u_2 = e_1 + e_2 - 2e_3$
 $u_3 = -3e_1 + 4e_2 + 2e_3$

- a) Démontrer que B' = (u_1, u_2, u_3) est une base de IR³.
- b) Déterminer la matrice de passage P de la base B à la base B'.

c) Vérifier que
$$P^{-1} = \frac{1}{3} \begin{pmatrix} -10 & -4 & -7 \\ 6 & 3 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$
.

4. On pose f = f₀ et on désigne par T la matrice de f relativement à la base B'. Déterminer la matrice T.

PAGE 213

XERCICE 3

Trois usines notées U₁, U₂ et U₃ fabriquent des souris pour ordinateurs. Le marché est exclusivement alimenté par ces trois usines.

Le pourcentage de production de chaque usine et le pourcentage de souris défectueuses de chaque usine sont consignés dans le tableau ci-dessous.

	Usine 1	Usine 2	Usine 3
Pourcentage de production	35 %	40 %	25 %
Pourcentage de souris défectueuses	5 %	4,5 %	2 %

On désigne par U_i , l'évènement « la souris provient de l'usine i », $i \in \{1; 2; 3\}$ et par D l'évènement « la souris est défectueuse ».

- 1°)
 - a) Calculer $P(U_1 \cap D)$; $P(U_2 \cap D)$ et $P(U_3 \cap D)$
 - b) Calculer P (D) MAN Sujets
- 2°) Le gestionnaire d'un cyber café, gagné par la poisse, veut remplacer une souris défectueuse. Pour cela, il va chez un revendeur pour s'en procurer une.

De retour dans son cyber, il constate à l'usage que la souris achetée est défectueuse. Calculer la probabilité pour que la souris achetée provienne de la deuxième usine.

- 3°) On considère la variable aléatoire X qui prend la valeur i si la souris provient de l'usin i et est non défectueuse et qui prend la valeur i si la souris provient de l'usine i et est défectueuse.
 - a) Donner la loi de probabilité de X.
 - b) Calculer E(X), l'espérance mathématique de la variable aléatoire X.
 - c) Donner la variance V(X) et l'écart-type σ(X) de la variable aléatoire X.
- 4°) Dans la fabrication d'une journée de l'usine 1, on prélève 10 souris. On désigne par Y, la variable aléatoire qui est égale au nombre de souris défectueuses parmi les 10 souris prélevées.
 - a) Donner la loi suivie par la variable aléatoire Y. Justifier.
 - b) Donner la loi de probabilité de Y.
 - c) Déterminer le nombre moyen de souris défectueuses parmi les 10 prélevées.

PAGE 313