Déterminer l'ensemble de définition des fonctions suivantes

1)
$$f(x) = \ln(2-x) + \ln(x+3)$$
; 2) $f(x) = \ln(x^2 - 5x + 6)$

3)
$$f(x) = \frac{\sin x}{1 - \ln x}$$
; 4) $f(x) = \frac{x+3}{x \ln x}$; 5) $f(x) = \sqrt{2 - \ln x}$

Solution:

1)
$$f(x) = \ln(2-x) + \ln(x+3)$$

$$x \in D_f \Leftrightarrow 2-x > 0 \text{ et } x + 3 > 0$$

 $\Leftrightarrow x < 2 \text{ et } x > -3$

Donc:
$$D_f =]-\infty; 2[\cap]-3; +\infty[=]-3; 2[$$

2)
$$f(x) = \ln(x^2 - 5x + 5)$$

$$x \in D_t \Leftrightarrow x^2 - 5x + 6 > 0$$

On résoudre l'équation $x^2 - 5x + 6$

$$\Delta = 1 > 0$$
 donc $x = 2$ ou $x = 3$

On dresse le tableau de signe de $x^2 - 5x + 6$

X	-00	2	3	+50
$x^2 - 5x + 6$		0 -	0	+

Donc: $D_f =]-\infty; 2[\cup]3; +\infty[$

$$3) f(x) = \frac{x \ln x}{1 - \ln x}$$

$$x \in D_f \Leftrightarrow x > 0$$
 et $1 - \ln x \neq 0$

$$\Leftrightarrow x > 0$$
 et $\ln x \neq 1$

$$\Leftrightarrow x > 0$$
 et $\ln x \neq \ln e$

$$\Leftrightarrow x > 0$$
 et $x \neq e$

Donc:
$$D_f =]0; e [\cup]e; +\infty [$$

4)
$$x \in D_f \Leftrightarrow x > 0$$
 et $x \ln x \neq 0$

$$\Leftrightarrow x > 0$$
 et($x \neq 0$ ou $\ln x \neq 0$)

$$\Leftrightarrow x > 0$$
 et $\ln x \neq \ln 1$

$$\Leftrightarrow x > 0$$
 et $x \neq 1$

Donc:
$$D_f =]0; 1 [\cup]1; +\infty [$$

5)
$$f(x) = \sqrt{2 - \ln x}$$

$$x \in D_f \Leftrightarrow x > 0$$
 et $2 - lnx \ge 0$

$$\Leftrightarrow x > 0$$
 et $lnx \le 2$

$$\Leftrightarrow x > 0$$
 et $x \le e^2$

Donc
$$D_f =]-\infty; e^2] \cap]0; +\infty [=]0; e^2]$$

Exercice 02

Résoudre dans R les équations suivantes

$$(E_1)$$
: $ln(x-1) = 0$; (E_2) : $3 - ln x = 0$

$$(E_3)$$
: $\ln(x^2 + x + 1) = 0$; (E_4) : $(x + 2)\ln(x - 3) = 0$

(E₅):
$$\ln^2(x) + \ln(x) - 2 = 0$$
; (E₆): $\ln(x-3) + \ln(9-x) = 0$

Solution:

$$(E_1): \ln(x-1) = 0$$

On note par D_F l'ensemble de définition de l'équation

$$x \in D_E \Leftrightarrow x-1 > 0$$

$$\Leftrightarrow x > 1$$

Donc:
$$D_F = [1; +\infty[$$

$$\ln(x-1) = 0 \Leftrightarrow \ln(x-1) = \ln 1$$
$$\Leftrightarrow x-1 = 1$$

$$\Leftrightarrow x = 2$$

On note par S l'ensemble des solutions de l'équation

Donc:
$$S = \{2\}$$

$$(E_2): 3 - \ln x = 0$$

$$x \in D_E \Leftrightarrow x > 0$$

Donc:
$$D_F = [0; +\infty[$$

$$3 - \ln(x) = 0 \Leftrightarrow \ln(x) = 3$$

$$cov x = e^3$$

Donc
$$S = \{e^3\}$$

$$(E_3): \ln(x^2 + x + 1) = 0$$

On note par D_E l'ensemble de définition de l'équation

$$x \in D_E \iff x^2 + x + 1 > 0$$

Donc:
$$D_E = IR$$
;

car
$$(\forall x \in IR): x^2 + x + 1 > 0 : \Delta = -3 < 0$$

$$\ln(x^2 + x + 1) = 0 \Leftrightarrow \ln(x^2 + x + 1) = \ln 1$$

 $\Leftrightarrow x^2 + x + 1 = 1 \Leftrightarrow x^2 + x = 0$

$$\Leftrightarrow x(x+1) = 1 \Leftrightarrow x = 1 \text{ ou } x = -1$$

Donc:
$$S = \{1; -1\}$$

$$(E_4)$$
: $(x+2)\ln(x-3)=0$

On note par D_E l'ensemble de définition de l'équation

$$x \in D_E \Leftrightarrow x-3 > 0$$

 $\Leftrightarrow x > 3$

Donc:
$$D_F = [3; +\infty[$$

$$(x+2)\ln(x-3) = 0 \Leftrightarrow x+2 = 0 \text{ ou } \ln(x-3) = 0$$

$$\Leftrightarrow x = -2 \text{ ou } x - 3 = 1 \Leftrightarrow x = -2 \notin D_E \text{ ou } x = 4$$

Donc:
$$S = \{4\}$$

$$(E_5)$$
: $\ln^2(x) + \ln(x) - 2 = 0$

$$x \in D_E \Leftrightarrow x > 0$$

Donc:
$$D_F =]0; +\infty[$$

$$\ln^2(x) + \ln(x) - 2 = 0 \Leftrightarrow (\ln x)^2 + \ln(x) - 2 = 0$$

On pose X = ln(x), donc:

$$(E_S) \Leftrightarrow X^2 + X - 2 = 0 \quad Avec X = In(x)$$

$$\Delta=1^2-4\times1\times(-2)=9$$

$$X = \frac{-1 + \sqrt{9}}{2}$$

$$X = 1$$

$$\ln(x) = 1$$

$$ou \quad X = \frac{-1 - \sqrt{9}}{2}$$

$$ou \quad X = -2$$

$$ou \quad ln(x) = -2$$

$$X = 1$$
 ou $X = -$

$$ln(x) = 1$$
 ou $ln(x) = -2$

$$x = e$$
 ou $x = e^{-2}$

Donc:
$$S = \{e; e^{-2}\}$$

$$(E_6)$$
: $ln(x-3) + ln(9-x) = 0$

Ensemble de définition :

$$x-3>0$$
 et $9-x>0$ donc $x>3$ et $x<9$

L'équation est définie sur l'intervalle [3 : 9[.

Donc:
$$D_1 = [3; 9]$$
.

$$\ln(x-3) + \ln(9-x) = 0 \iff \ln[(x-3)(9-x)] = 0$$

$$\Leftrightarrow \ln[(x-3)(9-x)] = \ln 1$$

$$\Leftrightarrow (x-3)(9-x) = 1$$

$$\Leftrightarrow -x^2 + 12x - 27 = 1$$

$$\Leftrightarrow -x^2 + 12x - 28 = 0$$

$$\Delta = 12^2 - 4 \times (-1) \times (-28) = 32$$

$$x = \frac{-12 + \sqrt{32}}{-2} = 6 - 2\sqrt{2}$$
 ou $x = \frac{-12 - \sqrt{32}}{-2} = 6 + 2\sqrt{2}$

Les solutions sont donc $6 - 2\sqrt{2}$ et $6 + 2\sqrt{2}$ car elles appartiennent bien à l'ensemble de définition [3 : 9[.

Donc:
$$S = [6 - 2\sqrt{2}; 6 + 2\sqrt{2}]$$

Exercice 03

Résoudre dans Il les inéquations suivantes

$$(l_1): \ln(x) - 1 \ge 0$$
 ; $(l_2): \ln(3 - x) - \ln(x + 1) \le 0$

$$(l_3)$$
: $ln(1-\frac{2}{r}) > 0$; (l_4) : $ln^2(x) - 3ln(x) + 2 < 0$

Solution:

$$(l_1)$$
: $ln(x) - 1 \ge 0$

On note par D, l'ensemble de définition de l'inéquation

$$x \in D_1 \Leftrightarrow x > 0$$

Donc:
$$D_{j} =]0; +\infty$$

$$ln(x) - 1 \ge 0 \Leftrightarrow ln(x) \ge 1$$

$$\Leftrightarrow \ln(x) \ge \ln(e)$$

$$\Leftrightarrow x \ge e$$

$$\Leftrightarrow x \in [e; +\infty[$$

Donc:
$$S = [e; +\infty \cap 0; +\infty] = [e; +\infty].$$

$$(I_2)$$
: $ln(3-x) - ln(x+1) \le 0$

L'inéquation est définie si : 3 - x > 0 et x + 1 > 0

Donc
$$x < 3$$
 et $x > -1$

L'inéquation est définie sur |-1:3|.

On restreint donc la recherche des solutions à cet intervalle.

$$ln(3-x) - ln(x+1) \le 0 \Leftrightarrow ln(3-x) \le ln(x+1)$$

 $\Leftrightarrow 3-x \le x+1$
 $\Leftrightarrow 2 \le 2x$
 $\Leftrightarrow 1 \le x$

L'ensemble solution est donc $]-1:3[\cap [1:+\infty[$

Donc
$$S = [1; 3]$$
.

$$(l_3)$$
: $ln(1-\frac{2}{x}) > 0$

L'inéquation est définie si $1-\frac{2}{r}>0$; Donc $\frac{r-2}{r}>0$

x	-∞ 0		2		-00
ж	- 0			+	
x-2	- 1		0	+	
$\frac{x-2}{x}$		-	q	+	

$$Donc: D_1 =]-\infty; 0[\cup]2; +\infty[$$

$$\ln\left(1 - \frac{2}{x}\right) > 0 \Leftrightarrow \ln\left(1 - \frac{2}{x}\right) > \ln\left(1\right)$$

$$\Leftrightarrow 1 - \frac{2}{x} > 1$$

$$\Leftrightarrow -\frac{2}{x} > 0$$

$$\Leftrightarrow \frac{2}{x} < 0$$

L'ensemble solution est donc $]-\infty$; $0[\cap (]-\infty; 0[\cup]2; +\infty[)$

Donc
$$S =]-\infty : 0[$$
.

 (L_x) : $\ln^2(x) - 3\ln(x) + 2 < 0$

$$x \in D_1 \Leftrightarrow x > 0$$

Donc: $D_i = [0; +\infty[$

> Résoudrons l'équation $\ln^2(x) - 3\ln(x) + 2 = 0$

On pose X = ln(x), donc:

$$\ln^2(x) - 3\ln(x) + 2 = 0 \iff X^2 - 3X + 2 = 0 ; \text{avec } X = \ln(x)$$

$$\Delta = 3^2 - 4 \times 1 \times 2 = 1$$

$$X = \frac{3 - \sqrt{1}}{2} \qquad ou \qquad X = \frac{3 + \sqrt{1}}{2}$$

$$X = 1$$
 ou $X = 2$
 $ln(x) = 1$ ou $ln(x) = 2$

$$ln(x) = 1$$
 ou $ln(x) = 2$

$$x = e$$
 ou $x = e^2$

Tableau de signe de $\ln^2(x) - 3\ln(x) + 2 = (\ln x - 1)(\ln x - 2)$

×	0	e	e ²		+60
$\ln^2(x) - 3\ln(x) + 2$	*	0 -	0	*	

> Donc les solution de l'inéquation $\ln^2(x) - 3\ln(x) + 2 < 0$

est
$$S = |e; e^2|$$

Exercice 04

Résoudre dans R2 les systèmes suivants :

$$(S_1)$$
: $\begin{cases} 3 \ln x + 7 \ln y = 4 \\ 2 \ln x + 5 \ln y = 3 \end{cases}$; (S_2) : $\begin{cases} \ln x \cdot \ln y = -10 \\ \ln x + \ln y = 3 \end{cases}$

Solution:

$$(S_1):\begin{cases} 3\ln x + 7\ln y = 4 \\ 2\ln x + 5\ln y = 3 \end{cases}$$
; (S_1) est définit si $x > 0$ et $y > 0$

1000 méthode :

$$\begin{cases} 3\ln x + 7\ln y = 4 \\ 2\ln x + 5\ln y = 3 \end{cases} \Leftrightarrow \begin{cases} \ln x = \frac{4-7\ln y}{3} \\ 2\ln x + 5\ln y = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} \ln x = \frac{4 - 7 \ln y}{3} \\ 2\frac{4 - 7 \ln y}{3} + 5 \ln y = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} \ln x = \frac{4 - 7 \ln y}{3} \\ \frac{8 - 14 \ln y + 15 \ln y}{3} = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} \ln x = \frac{4 - 7 \ln y}{3} \\ \ln y + 8 = 9 \end{cases}$$

$$\Leftrightarrow \begin{cases} \ln x = \frac{4 - 7 \ln y}{3} \\ \ln y = 1 \end{cases} \Leftrightarrow \begin{cases} \ln x = \frac{4 - 7}{3} \\ \ln y = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \ln x = -1 \\ \ln y = 1 \end{cases} \Leftrightarrow \begin{cases} x = e^{-1} \\ y = e \end{cases}$$

$$\Rightarrow \begin{cases} \ln x = -1 \\ \ln y = 1 \end{cases} \Leftrightarrow \begin{cases} x = e^{-1} \\ y = e \end{cases}$$

2 methode:

On pose X = ln(x) et Y = ln(y) donc

$$\begin{cases} 3\ln x + 7\ln y = 4 \\ 2\ln x + 5\ln y = 3 \end{cases} \iff \begin{cases} 3X + 7Y = 4 \\ 2X + 5Y = 3 \end{cases}$$

Par la méthode de determinant on a :

$$D = \begin{vmatrix} 3 & 7 \\ 2 & 5 \end{vmatrix} = 15 - 14 = 1$$

$$D_X = \begin{vmatrix} 4 & 7 \\ 3 & 5 \end{vmatrix} = 20 - 21 = -1$$

$$D_Y = \begin{vmatrix} 3 & 4 \\ 2 & 3 \end{vmatrix} = 9 - 81 = 1$$

$$Donc X = \frac{D_X}{D} = -1 \quad \text{et} \quad Y = \frac{D_Y}{D} = 1$$

$$Donc \ln(x) = -1 \quad \text{et} \quad \ln(y) = 1$$

$$Donc x = e^{-1} \quad \text{et} \quad y = e$$

$$Donc : S = \{(e^{-1} : e)\}$$

$$(S_2):\begin{cases} \ln x \cdot \ln y = -10 \\ \ln x + \ln y = 3 \end{cases}; (S_2) \text{ est définit si } x > 0 \text{ et } y > 0$$

1 methode:

On pose X = ln(x) et Y = ln(y) donc

$$\begin{cases} \ln x \cdot \ln y = -10 \\ \ln x + \ln y = 3 \end{cases} \iff \begin{cases} X \times Y = -10 \\ X + Y = 3 \end{cases}$$

Rannel:

Pour déterminer deux réels x et v tels que

$$x + y = S$$
 et $x \times y = P$ avec S et P donnés

On résoudre l'équation $t^2 - St + P = 0$

Donc on résoudre l'équation $t^2 - 3t - 10 = 0$

$$\Delta = (-3)^{2} - 4 \times 1 \times (-10) = 49$$

$$X = \frac{3 - \sqrt{49}}{2} \quad \text{et} \quad Y = \frac{3 + \sqrt{49}}{2}$$

$$X = -2 \quad \text{et} \quad Y = 5$$

$$\ln x = -2 \quad \text{et} \quad \ln y = 5$$

Donc:
$$S = \{(e^{-2}; e^{5}); (e^{5}; e^{-2})\}$$

2**** méthode :

$$\begin{cases} \ln x \cdot \ln y = -10 \\ \ln x + \ln y = 3 \end{cases} \iff \begin{cases} \ln x \cdot \ln y = -10 \\ \ln x = 3 - \ln y \end{cases} \iff \begin{cases} 3\ln y - \ln^2 y + 10 = 0 \\ \ln x = 3 - \ln y \end{cases} \iff \begin{cases} \ln x = 3 - \ln y \\ \ln x = 3 - \ln y \end{cases} \iff \begin{cases} \ln y = -2 \text{ ou } \ln y = 5 \\ \ln x = 3 - \ln y \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } y = e^{5} \\ \ln x = 3 - \ln y \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 3 - \ln y \end{cases} \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 3 - \ln y \end{cases} \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 5 \end{cases} \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 5 \end{cases} \end{cases} \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 5 \end{cases} \end{cases} \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 5 \end{cases} \end{cases} \end{cases} \end{cases} \iff \begin{cases} y = e^{-2} \text{ ou } \begin{cases} y = e^{5} \\ \ln x = 5 \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

Calculer les limites suivantes :

- a) $\lim_{x \to +\infty} x \ln x$; b) $\lim_{x \to 0^+} \frac{\ln^2(x)}{x}$; c) $\lim_{x \to +\infty} \frac{\ln x}{x-1}$
- d) $\lim_{x\to 0^+} \frac{1}{x^2} + \ln x$; e) $\lim_{x\to 0^+} \frac{1}{x \ln(\sqrt[4]{x})}$; f) $\lim_{x\to +\infty} \ln(x^2+1) x$
 - j) $\lim_{x \to 0} x \ln(x + \frac{1}{x})$; h) $\lim_{x \to 0} \frac{\ln^2(x)}{x}$; k) $\lim_{x \to 0} x (\ln x)^3$

Solution:

Rappel (FJ):
$$\frac{0}{0}$$
 ; $\frac{\infty}{\infty}$; $0 \times \infty$; $+\infty - (+\infty)$

a) Il s'agit d'une forme indéterminée de type "+ * - * ".

Levons l'indétermination :

$$\lim_{x \to +\infty} x - \ln x = \lim_{x \to +\infty} x \left(1 - \frac{\ln x}{x} \right)$$
$$= \lim_{x \to +\infty} x \left(1 - \frac{\ln x}{x} \right)$$

Et comme $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et : $\lim_{x \to +\infty} 1 - \frac{\ln x}{x} = 1$.

Donc: $\lim x - \ln x = +\infty$.

b) On a: $\lim_{x\to 0^+} x = 0^+$ et $\lim_{x\to 0^+} \ln^2 x = +\infty$

Donc $\lim_{x\to 0^+} \frac{\ln^2 x}{x} = \frac{\bullet + \infty \bullet}{0^+} = +\infty$

c) Il s'agit d'une forme indéterminée de type " 媒 ".

Levons l'indétermination :

$$\lim_{x \to +\infty} \frac{\ln x}{x-1} = \lim_{x \to +\infty} \frac{\frac{\ln x}{x}}{\frac{x-1}{x}} = \lim_{x \to +\infty} \frac{\frac{\ln x}{x}}{1-\frac{1}{x}}$$

Comme $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et $\lim_{x \to +\infty} 1 - \frac{1}{x} = 1$, on a, comme limite d'un

quotient:
$$\lim_{x \to +\infty} \frac{\frac{\ln x}{x}}{1 - \frac{1}{x}} = \frac{0}{1} = 0$$
; donc: $\lim_{x \to +\infty} \frac{\ln x}{x - 1} = 0$

Il s'agit d'une forme indéterminée de type "+ * - * ".

$$\lim_{x\to 0^+} \frac{1}{x^2} + \ln x = \lim_{x\to 0^+} \frac{1+x^2 \ln x}{x^2} = \frac{1}{0^+} = +\infty$$

Car $\lim_{x\to 0^+} x^2 = 0^+$ et $\lim_{x\to 0^+} 1 + x^2 \ln x = 1 + 0 = 1$

e)
$$\lim_{x \to 0^{+}} \frac{1}{x \ln \sqrt[4]{x}} = \lim_{x \to 0^{+}} \frac{1}{x \ln x^{\frac{1}{2}}}$$
$$= \lim_{x \to 0^{+}} \frac{1}{\frac{1}{x} \ln x} = -\infty$$

Car $\lim_{x \to 0^+} x \ln x = 0^-$; $0 < x < 1 \Leftrightarrow \ln(x) < 0$

¶ II s'agit d'une forme indéterminée de type "+ ≠ − ≠ ".

$$\lim_{x \to +\infty} \ln(x^{2} + 1) - x = \lim_{x \to +\infty} x \left[\frac{\ln(x^{2} + 1)}{x} - 1 \right]$$

$$= \lim_{x \to +\infty} x \left[\frac{\ln\left(x^{2}(1 + \frac{1}{x^{2}})\right)}{x} - 1 \right]$$

$$= \lim_{x \to +\infty} x \left[\frac{\ln(x^{2}) + \ln\left(1 + \frac{1}{x^{2}}\right)}{x} - 1 \right]$$

$$= \lim_{x \to +\infty} x \left[\frac{2\ln(x)}{x} + \frac{\ln\left(1 + \frac{1}{x^{2}}\right)}{x} - 1 \right]$$

Car
$$\lim_{x \to +\infty} x = +\infty$$
 et $\lim_{x \to +\infty} \frac{2ln(x)}{x} = 0$ et

$$\lim_{x \to +\infty} \frac{\ln\left(1 + \frac{1}{x^2}\right)}{x} = 0$$

III -- 00

Il s'agit d'une forme indéterminée de type "+∞0".

On pose
$$X = \frac{1}{x}$$
 donc $x = \frac{1}{x}$;

or
$$x \to +\infty \iff X \to 0^+$$

$$\lim_{X \to +\infty} x \ln(1 + \frac{1}{X}) = \lim_{X \to 0^+} \frac{1}{X} \ln(1 + X)$$
$$= \lim_{X \to 0^+} \frac{\ln(1 + X)}{X} = 1$$

Car
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

h)
$$\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = \lim_{x \to +\infty} \frac{(\ln \sqrt{x}^2)^2}{\sqrt{x}^2}$$

$$= \lim_{x \to +\infty} \frac{(2 \ln \sqrt{x})^2}{\sqrt{x^2}}$$

$$= \lim_{x \to \infty} \left(\frac{2 \ln \sqrt{x}}{\sqrt{x}} \right)^2$$

On pose $X = \sqrt{x}$ donc $x = X^2$; or $x \to +\infty \iff X \to +\infty$

$$\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = \lim_{x \to +\infty} \left(\frac{2 \ln \sqrt{x}}{\sqrt{x}} \right)^2$$
$$= \lim_{x \to +\infty} \left(\frac{2 \ln X}{X} \right)^2$$
$$= 0$$

Car
$$\lim_{X\to +\infty} \frac{2\ln X}{X}$$

k) $\lim_{x\to 0^+} x(\ln x)^3 = \lim_{x\to 0^+} (\sqrt[1]{x})^3 (\ln(\sqrt[1]{x})^3)^3$ $=\lim_{x\to 0^+} (\sqrt[1]{x})^3 (3 \ln \sqrt[1]{x})^3$ $= \lim_{x \to \infty} (3\sqrt[3]{x} \ln \sqrt[3]{x})^3$

On pose $X = \sqrt[1]{x}$ donc $x = X^3$: or $x \to 0^+ \Leftrightarrow X \to 0^+$ $\lim_{x\to 0^+} x(\ln x)^3 = \lim_{x\to 0^+} (3X \ln X)^3 = 0$

 $(\operatorname{car} \lim_{X\to 0^+} X \ln X = 0)$

Exercice 06

Soit la fonction f définie sur |0|; $+\infty$ par $f(x) = 1 - x + \ln x$

- 1) Etudier les branches infinies de (Cf)
- 2) Étudier la position relative de (Cf)et la droite : (Δ): y = -x
- 3) Déterminer les variations de la fonction f
- 4) Étudier la convexité de la fonction f.
- Tracer (D) et(Cf) dans un repère orthonormé (0; i; j)

Solution:

1) Etudier les branches infinies de (Cf)

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} 1 - x + \ln x$$
$$= -\infty$$

$$Car : \lim_{x \to 0^+} 1 - x = 1$$
 et $\lim_{x \to 0^+} \ln x = -\infty$

Donc la droite d'équation x = 0 c-à-dire l'axe des abscisses est asymptotes verticale à (Cf)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 1 - x + \ln x$$

$$= \lim_{x \to +\infty} x \left(\frac{1}{x} - 1 + \frac{\ln x}{x} \right)$$

$$= \lim_{x \to +\infty} x \left(\frac{1}{x} - 1 + \frac{\ln x}{x} \right)$$

Car
$$\lim_{x\to +\infty} x = +\infty$$
 et $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ et $\lim_{x\to +\infty} \frac{1}{x} = 0$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1 - x + \ln x}{x}$$

$$= \lim_{x \to +\infty} \frac{x\left(\frac{1}{x} - 1 + \frac{\ln x}{x}\right)}{x}$$

$$= \lim_{x \to +\infty} \frac{1}{x} - 1 + \frac{\ln x}{x}$$

$$= -1$$

$$\lim_{x \to +\infty} f(x) - (-x) = \lim_{x \to +\infty} 1 - x + \ln(x) + x$$
$$= \lim_{x \to +\infty} 1 + \ln(x)$$
$$= +\infty$$

Donc la courbe (Cf) admet une branche parabolique suivant la droite (Δ) d'équation y = -x au voisinage de $+\infty$

2) Étudier la position relative de (Cf)et la droite : (Δ): y = -x

$$f(x) - (-x) = 1 - x + \ln(x) + x$$

= 1 + \ln(x)

Cherchons le signe de $2 + 2 \ln(x) \sin |0| + \infty$

$$1 + 2 \ln(x) = 0 \Leftrightarrow \ln(x) = -1$$
$$\Leftrightarrow x = e^{-1}$$
$$\Leftrightarrow x = \frac{1}{e}$$

x	0		1	+α
f(x) + x	111	1-1	0	+
Posion relative	(Cf) es dessou	t en	$A(\frac{1}{e}; -\frac{1}{e})$ Point intersection	(Cf) est es

3) Sur |0 : +∞| f est dérivable et, on a :

$$f'(x) = -1 + \frac{1}{x} = \frac{1-x}{x}$$

Comme x > 0, f'(x) est du signe de 1 - x

La fonction f est donc strictement croissante sur [0:1] et strictement décroissante sur [1 : +∞].

On dresse le tableau de variations :

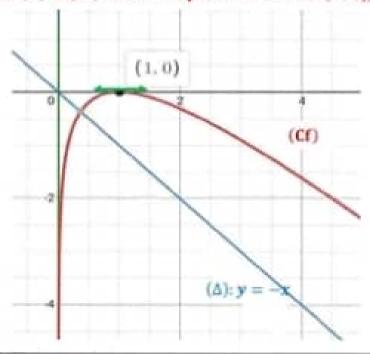
 0	-	
J 0 ~	4.2	
	•	
	0 -	0

- f(2) = 1 1 + ln1 = 0
- 4) Sur]0; +∞[, on a f' est dérivable de plus :

$$f''(x) = \frac{-1 \times x - (1 - x) \times 1}{x^2}$$
$$= \frac{-x - 1 + x}{x^2} = \frac{-1}{x^2} < 0$$

On en déduit que (Cf) la courbe de f est concave sur $|0 : +\infty|$.

5) Tracer (D) et(Cf) dans un repère orthonormé (0; i; j)



- A) Soitg une fonction définit sur $]0; +\infty[$ par $g(x) = x \ln(x)$
 - 1) Déterminer $\lim_{x\to 0} g(x)$ et $\lim_{x\to 0} g(x)$
 - 2) Calculer g'(x) :puis dresser le tableau des variations de g
 - 3) Montrer que : $\forall x \in [0; +\infty[; g(x) > 0]$
- B) f une fonction définit sur $]0; +\infty[par f(x) = ln(x) + \frac{1+ln(x)}{x}]$
- 1) Déterminer $\lim_{x\to 0^+} f(x)$ et Interpréter le résultat géométrique
- 2) Calculer lim f(x)et étudier la branche infinie de(Cf)au voisinage de +00
- 3)a) Montrer que $\forall x \in]0, +\infty[: f'(x) = \frac{g(x)}{x^2}]$
 - b) Dresser le tableau de variation de f
 - c) Déterminer l'équation de la tangente (T) au point A(1;1)
- 4) Montrer que f admet une fct réciproque f-1, définie sur] que l'on précisera
- 5) Montrer que l'équation f(x) = 0 admet une unique solution α dans $\left|\frac{1}{2}, 1\right|$; (On prend $f\left(\frac{1}{2}\right) = -0, 2$)
- 6) Tracer (T) et(Cf) et (Cf⁻¹)dans un repère orthonormé (0; i; i) Solution:
- B) Soitg une fonction définit sur $]0; +\infty[$ par $g(x) = x \ln(x)$
- 1) Déterminer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to 0^+} g(x)$

$$\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} x - \ln(x) = +\infty$$

Car $\lim_{x\to 0^+} x = 0$ et $\lim_{x\to 0^+} \ln(x) = -\infty$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(1 - \frac{\ln x}{x} \right) = +\infty$$

Car $\lim_{x\to+\infty} x = +\infty$ et $\lim_{x\to+\infty} \frac{\ln x}{x} = 0$

 Calculer g'(x) :puis dresser le tableau des variations de g g est dérivable sur |0 ; +∞ et on a :

Comme x > 0, g'(x) est du signe de x - 1.

On a
$$g(1) = 1 - \ln 1 = 1$$

X	0		1	+00
g'(x)	H	- T	0	
_	1 +00	_		- +a
q(x)	Ш		_	
MIAI	ш			

3) Montrer que : $\forall x \in [0; +\infty[; g(x) > 0]$

On en déduit que pour tout x de $[0: +\infty[$.

on a 1 est une valeur minimale de g sur [0 : +∞[

$$Donc g(x) = x - \ln x \ge 1 > 0$$

donc g(x) > 0

- B) f une fonction définit sur $]0; +\infty[$; par $f(x) = \ln(x) + \frac{1}{x} + \frac{\ln(x)}{x}$
- Déterminer lim f(x) et Interpréter le résultat géométrique

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \ln(x) + \frac{1}{x} + \frac{\ln(x)}{x}$$

$$= \lim_{x\to 0^+} \frac{x \ln(x) + 1 + \ln(x)}{x}$$

$$= -\infty$$

Car: $\lim_{x\to 0^{-}} x \ln(x) = 0$ et $\lim_{x\to 0^{-}} \frac{\ln(x)}{x} = -\infty$

Donc la droite d'équation x = 0 c-à-dire l'axe des abscisses est asymptotes verticale à (Cf)

2) Calculer $\lim_{x \to +\infty} f(x)$ et étudier la branche infinie de(Cf)au voisinage de +∞

$$\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} \ln(x) + \frac{1}{x} + \frac{\ln(x)}{x} = +\infty$$

Car $\lim_{x\to+\infty} \ln(x) = +\infty$ et $\lim_{x\to+\infty} \frac{1}{x} = 0$ et $\lim_{x\to+\infty} \frac{\ln(x)}{x} = 0$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln(x) + \frac{1}{x} + \frac{\ln(x)}{x}}{x}$$

$$= \lim_{x \to +\infty} \frac{\ln(x)}{x} + \frac{1}{x^2} + \frac{\ln(x)}{x^2}$$

$$= 0$$

$$Car: \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \text{ et } \lim_{x \to +\infty} \frac{1}{x^2} = 0 \text{ et } \lim_{x \to +\infty} \frac{\ln(x)}{x^2} = 0$$

Donc la courbe (Cf) admet une branche parabolique suivant l'axe des abscisses au voisinage de +co

3)a) Montrer que
$$\forall x \in]0, +\infty[: f'(x) = \frac{g(x)}{x^2}]$$

La fonction f est dérivable sur [0, +∞] comme somme des fonctions dérivable sur |0, +∞

Rappel:
$$(\ln x)' = \frac{1}{x}$$
; $(\frac{1}{x})' = -\frac{1}{x^2}$; $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$

$$f'(x) = \frac{1}{x} - \frac{1}{x^2} + \frac{\frac{1}{x} \times x - ln(x) \times 1}{x^2}$$

$$f'(x) = \frac{x}{x^2} - \frac{1}{x^2} + \frac{1 - \ln(x)}{x^2}$$
$$= \frac{x - 1 + 1 - \ln(x)}{x^2}$$

$$=\frac{x-\ln(x)}{x^2}$$

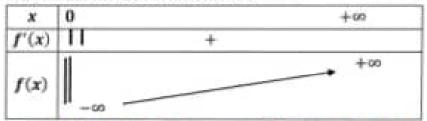
$$=\frac{g(x)}{x^2}$$

b) Dresser le tableau de variation de f

$$0n \ a: \ \forall x \in \]0, +\infty[\ :f'(x) = \frac{g(x)}{x^2} \quad et \ \forall x \in \]0, +\infty[\ :g(x) > 0$$

Donc la fonction f est strictement croissante sur |0, +∞|

On dresse le tableau de variations de f



c)Déterminer l'équation de la tangente (T) au point A[1;1]

(T):
$$y = f'(1)(x-1) + f(1)$$

 $y = 1 \times (x-1) + 1$
(T): $y = x$

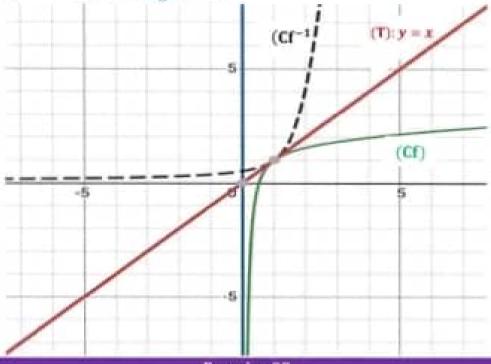
- 4) Montrer que f admet une fct réciproque f-1, définie sur J que l'on précisera
- f est dérivable sur]0, +∞[donc elle est continue sur]0, +∞[
- La fonction f est strictement croissante sur]0, +∞[Donc f admet une sct réciproque f^{-1} , définie sur $I = f(]0, +\infty[)$ $I = f(]0, +\infty[)$ $= \lim_{x\to 0^+} f(x), \lim_{x\to +\infty} f(x)$
- 5) Montrer que l'équation f(x) = 0 admet une unique solution α dans $\frac{1}{2}$, 1 ; (On prend $f(\frac{1}{2}) = -0, 2$)
- La fonction f est continue sur]0, +∞[en particulier] 1/2, 1
- La fonction f est strictement croissante sur]0, +∞[on particulier sur $\frac{1}{7}$, 1
- > Et on a f(1) = 1 et $f(\frac{1}{2}) = -0.2$ donc $f(1) \times f(\frac{1}{2}) < 0$

Donc l'équation f(x) = 0 admet une unique solution α dans $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

6) Tracer (T) et (Cf) et (Cf⁻¹)dans un repère orthonormé (0: i: i) (Cf) et (Cf⁻¹) sont symétrique par rapport à la droite (T): y = xLa droite d'équation x = 0 est asymptotes verticale à (Cf) La droite d'équation y = 0 est asymptotes horizontale à (Cf^{-1})

a courbe (Cf) admet une branche parabolique suivant l'axe des ibscisses au voisinage de +∞ : donc

a courbe (Cf-1) admet une branche parabolique suivant l'axe des prdonnées au voisinage de +00



Exercice 09

Soit la fonction f définie sur]-2; 1[par $f(x) = \ln \left(\frac{x+2}{1-x}\right)$

- 1)a) Montrer que $D_r = [-2:1]$
- b) Calculer $\lim_{x\to -2^+} f(x)$ et $\lim_{x\to 1^-} f(x)$ puis interpréter les deux résultats géométriquement
- 2)a) Montrer que f est dérivable sur]-2;1[
 - b) Déterminer le sens de variation de la fonction f
- 3) Montrer que l'équation f(x) = 0 admet une unique solution α dans |-1,0|
- 1) Tracer la courbe représentative de f.

Solution:

1)a) $x \in D_f \Leftrightarrow \frac{x+2}{1-x} > 0$; On dresse le tableau de signe de $\frac{x+2}{1-x}$

x	-∞ ·2		1	-00
x + 2	- 0	+		+
1-x	+	+	O.	-
$\frac{x+2}{1-x}$	- 0	•		•

$$D_f = |-2;1|$$

b) Par composition de limites, on a :

$$\lim_{\substack{x \to -2 \\ x > -2}} \frac{x+2}{1-x} = 0^+ \quad donc \quad \lim_{\substack{x \to -2 \\ x > -2}} f(x) = -\infty$$

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{x+2}{1-x} = +\infty \quad donc \quad \lim_{\substack{x \to 1 \\ x < 1}} f(x) = +\infty$$

La courbe de fonction f admet deux asymptotes verticales d'équations : x = -2 et x = 1.

- 2)a) la fonction $u: x \mapsto \frac{x+2}{1-x}$ est dérivable sur]-2; 1[car c'est une fonction rationnelle elle toujours dérivable sur tout intervalle inclus dans son domaine de définition qui est $]-\infty$; $1[\cup]1; +\infty[$ Donc la fonction f est dérivable sur]-2 : 1[
- b) Soit: |-2:1|

$$u'(x) = \frac{1 \times (1-x) - (x+2) \times (-1)}{(1-x)^2} = \frac{1-x+x+2}{(1-x)^2} = \frac{3}{(1-x)^2}$$

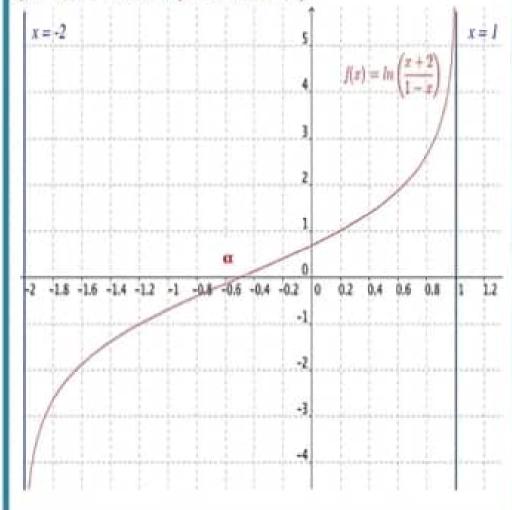
Donc:
$$f'(x) = \frac{u'(x)}{u(x)} = \frac{\frac{3}{(1-x)^2}}{u(x)}$$

u est strictement positive sur]-2 ; 1[et $\frac{3}{(1-x)^2} > 0$. donc f'(x) > 0.

Et donc la fonction f est strictement croissante sur]-2:1[.

x	-2		1
f'(x)		+	
f(x)	-00-		+ +00

- 3) Montrer que l'équation f(x) = 0 admet une unique solution α dans]-1, 0[
- ▶ La fonction f est continue sur]-2 : 1 en particulier [-1,0]
- La fonction f est strictement croissante sur |-2:1| on particulier sur [-1, 0]
- > Et on a $f(-1) = -\ln 2$ et $f(0) = \ln 2$ donc $f(-1) \times f(0) < 0$ Donc l'équation f(x) = 0 admet une unique solution α dans [-1, 0]
- Tracer sa courbe représentative de f.



- A) Soit g la fonction définie sur $]0; +\infty[$ par g(x) = 1 + x + lnx
- 1) Calculer $\lim g(x)$ et $\lim g(x)$.
- 2)a)Montrer que g est strictement croissante sur |0; +∞[
- b)Montrer que l'équation g(x) = 0 admet une unique solution α
- dans $]0; +\infty[$ et que $\frac{1}{z} < \alpha < \frac{1}{z}$. (On donne $g(\frac{1}{z}) \cong -0.4$)
- 3) Déduire le signe de g(x) pour tout $x \in [0; +\infty[$
- B) Soit f la fonction définie sur $[0; +\infty[$ par] $\begin{cases} f(x) = \frac{4 \times \ln x}{1+x}; x > 0 \\ f(0) = 0 \end{cases}$

Et (C_{ℓ}) sa courbe dans un repère orthonormé $(O; \vec{i}; \vec{j})$. (unité 2cm)

- 1)a) Montrer que f est continue à droite en 0.
- b) Montrer que $\lim_{x \to \infty} f(x) = +\infty$ et que $\lim_{x \to \infty} \frac{f(x)}{x} = 0$, puis interpréter graphiquement le résultat.
- 2)a)Montrer que $\lim_{x\to 0} \frac{f(x)}{x} = +\infty$, puis interpréter le résultat géom
- b) Montrer que pour tout $x \in]0; +\infty[: f'(x) = \frac{4g(x)}{(x+1)^2}$
- c) Déduire que f est strictement croissante sur l'intervalle
- [α; +∞[et strictement décroissante sur l'intervalle [0; α]
- d)Montrer que $f(\alpha) = -4\alpha$ et dresser le tableau de variations de f
- 3)a) Montrer que pour tout $x \in]0; +\infty[: f''(x) = \frac{4(1-x^2-2x\ln x)}{x(x+1)^2}$
- b) Etudier le signe de $1-x^2$ et $-2x\ln x$ sur $|0;+\infty|$ et en déduire que le point d'abscisse 1 est l'unique point d'inflexion de (C_{ℓ}) .
- c)Donner l'équation de la tangente (T) à (C_f) au point d'abscisse1
- 4) Tracer (T) et (C_f) dans le repère (O; \vec{t} ; \vec{j}).(on donne $\alpha \approx 0.25$)
- C) Soit h la restriction de f sur l'intervalle [α: +∞].
- Montrer que h admet une fonction réciproque h⁻¹ définie / à déterminer
- Montrer que h⁻¹ est dérivable en 0 puis Calculer (h⁻¹)'(0).

B) Soit a la fonction définie sur $[0; +\infty[$ par g(x) = 1 + x + lnx

1) Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to \infty} g(x)$.

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} 1 + x + \ln x = -\infty$$

$$Car: \lim_{x\to 0^+} 1 + x = 0 \text{ et } \lim_{x\to 0^+} \ln x = -\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 1 + x + \ln x = +\infty$$

$$Car \lim_{x \to +\infty} 1 + x = +\infty$$
 et $\lim_{x \to +\infty} \ln x = +\infty$

2)a)Montrer que q est strictement croissante sur |0; +∞|

g est dérivable sur]0: +∞ | comme somme de deux fonctions dérivables sur]0; +∞[et on a ;

$$g'(x)=1+\frac{1}{x}>0$$

g est strictement croissante sur $[0; +\infty]$

b) Montrer que l'équation g(x) = 0 admet une unique solution a

dans
$$|0; +\infty[$$
 et que $\frac{1}{5} < \alpha < \frac{1}{2}$. (On donne $g\left(\frac{1}{5}\right) \cong -0.4$)

On a g est dérivable sur $[0; +\infty[$ donc elle est continue sur $[0; +\infty[$ Et on a g est strictement croissante sur $[0; +\infty]$

De plus
$$g(]0; +\infty[) = \lim_{x\to 0^+} g(x); \lim_{x\to +\infty} g(x)[=]-\infty; +\infty[$$

Donc $0 \in q([0; +\infty[)$

D'où l'équation g(x) = 0 admet une unique solution $\alpha \in]0; +\infty[$

Vérifions que $\frac{1}{2} < \alpha < \frac{1}{2}$

On a g est continue sur $\left[\frac{1}{5}; \frac{1}{2}\right]$

Et g est strictement croissante sur

ET:
$$g\left(\frac{1}{5}\right) = -0.4$$
 et $g\left(\frac{1}{2}\right) = 1 + \frac{1}{2} + \ln\frac{1}{2} = \ln(e) - \ln 2 + \frac{1}{2} > 0$

 $Donc: g\left(\frac{1}{5}\right) \times g\left(\frac{1}{2}\right) < 0$

Déduire le signe de g(x) pour tout x ∈ |0; +∞

On distingue deux cas: $x \in [0:\alpha]$ et $x \in [\alpha:+\infty]$

Soit: $x \in [0; \alpha]$

 $x \in [0; \alpha] \Rightarrow x \le \alpha$ et g est str croissante sur $[0; \alpha]$

$$\Rightarrow g(x) \le g(\alpha)$$

 $\Rightarrow g(x) \le 0$

Soit: $x \in [\alpha; +\infty]$

 $x \in [\alpha; +\infty] \Rightarrow \alpha \le x$ et g est str croissante sur $[\alpha; +\infty]$

$$\Rightarrow g(\alpha) \le g(x)$$

 $\Rightarrow 0 \le g(x)$

On dresse le tableau de signe de g sur [0; +∞]

x	0	a	-60
g(x)		0	+

B) Soit f la fonction définie sur $[0; +\infty[$ par $: \begin{cases} f(x) = \frac{4 \times lnx}{1+x}; x > 0 \\ f(0) = 0 \end{cases}$

Et (C_I) sa courbe dans un repère orthonormé $(0; \vec{i}; \vec{j})$.(unité 2cm)

Montrer que f est continue à droite en 0.

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{4x \ln x}{1+x} = 0$$

Car:
$$\lim_{x\to 0^+} x \ln x = 0$$
 et $\lim_{x\to 0^+} 1 + x = 1$

$$Donc \lim_{x\to 0^+} f(x) = f(0)$$

Donc f est continue à droite de 0.

b) Montrer que $\lim_{x\to\infty} f(x) = +\infty$ et que $\lim_{x\to\infty} \frac{f(x)}{x} = 0$, puis

interpréter graphiquement le résultat.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4 x \ln x}{1 + x}$$

$$= \lim_{x \to +\infty} \frac{4 x \ln x}{x(\frac{1}{x} + 1)} = \lim_{x \to +\infty} \frac{4 \ln x}{\frac{1}{x} + 1} = +\infty$$

$$Car: \lim_{x \to +\infty} lnx = +\infty = \lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{4 x \ln x}{1+x}}{x}$$

$$= \lim_{x \to +\infty} \frac{4 x \ln x}{x(1+x)}$$

$$= \lim_{x \to +\infty} \frac{4 \ln x}{1 + x}$$

$$= \lim_{x \to +\infty} \frac{4 \ln x}{x(\frac{1}{x} + 1)}$$

$$= \lim_{x \to +\infty} \frac{4 \ln x}{x} \times \frac{1}{\frac{1}{x} + 1} = 0$$

$$Car : \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$

Interprétation géométrique

On
$$a: \lim_{x\to +\infty} f(x) = +\infty$$
 et $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$

Donc la courbe (Cf) admet une branche parabolique suivant l'axe des abscisses au voisinage de +co

2)a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$, puis interpréter le résultat géom

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{\frac{4 \times \ln x}{1+x}}{x}$$

$$= \lim_{x \to 0^+} \frac{4 \cdot \ln x}{1+x}$$

$$= -\infty$$

Car: $\lim_{n \to \infty} \ln 1 + x = 1$

Donc
$$\lim_{x\to 0^+} \frac{f(x)}{x} = \lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = -\infty$$

Donc f n'est pas dérivable à droite de 0

Interprétation géométrique :

la courbe (Cf) admet une demis tangente verticale au point A(0 :0) dirigée vers le bas

b) Montrer que pour tout $x \in [0; +\infty[: f'(x) = \frac{4g(x)}{(x+1)^2}]$

On la fonction f est dérivable sur |0; +∞ | comme quotient de deux fonctions dérivable sur [0: +∞]

Rappel:
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
; $(uv)' = u'v + uv'$; $(\ln x)' = \frac{1}{x}$

Solt $x \in [0; +\infty]$

$$f'(x) = \frac{\left(4\ln x + 4x \times \frac{1}{x}\right)(x+1) - (4x\ln x \times 1)}{(x+1)^2}$$

$$f'(x) = \frac{(4\ln x + 4)(x + 1) - 4x\ln x}{(x + 1)^2}$$

$$f'(x) = \frac{4x\ln x + 4\ln x + 4x + 4 - 4x\ln x}{(x+1)^2}$$

$$f'(x) = \frac{4\ln x + 4x + 4}{(x+1)^2}$$

$$f'(x) = \frac{4(\ln x + x + 1)}{(x+1)^2}$$

$$f'(x) = \frac{4g(x)}{(x+1)^2}$$

D'où pour tout $x \in]0; +\infty[: f'(x) = \frac{4g(x)}{(x+1)^2}]$

c) Déduire que f est strictement croissante sur l'intervalle $|\alpha; +\infty|$ et strictement décroissante sur l'intervalle $[0; \alpha]$

On a : pour tout
$$x \in]0; +\infty[: f'(x) = \frac{4g(x)}{(x+1)^2} \text{ et } (x+1)^2 > 0$$

Donc le signe de f' est le signe de g sur $[0; +\infty]$

Et on a d'après la partie A) le signe de g sur |0; +∞|

Donc f est strictement croissante sur l'intervalle $[a: +\infty]$ et strictement décroissante sur l'intervalle [0; α]

d) Montrons que $f(\alpha) = -4\alpha$

On
$$a$$
: $f(\alpha) = \frac{4 \alpha \ln \alpha}{1 + \alpha}$

Et d'après la partie A) le α est solution de l'équation g(x) = 0

Donc
$$g(\alpha) = 0$$
 donc $1 + \alpha + ln(\alpha) = 0$ donc $1 + \alpha = -ln(\alpha)$

Donc:
$$f(\alpha) = \frac{4 \alpha \ln \alpha}{1 + \alpha} = \frac{4 \alpha \ln \alpha}{-\ln(\alpha)} = -4\alpha$$

On dresse le tableau de variations de f

X	0		a		+00
f'(x)		-	0	*	
	0				J++00
f(x)					
			-4a		

3)a) Montrer que pour tout $x \in]0; +\infty[: f''(x) = \frac{4(1-x^2-2xinx)}{x(x+1)^3}$

Rappel:
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
; $(u^n)' = nu'u^{n-1}$; $(\ln x)' = \frac{1}{x}$

On a:
$$f'(x) = \frac{4(\ln x + x + 1)}{(x+1)^2}$$

Donc:
$$f''(x) = \frac{4(\frac{1}{x}+1)(x+1)^2 - 4(\ln x + x + 1) \times 2 \times 1 \times (x+1)^1}{(x+1)^4}$$

Donc:
$$f''(x) = \frac{4(\frac{1}{x}+1)(x+1)^2 - 8(\ln x + x + 1)(x+1)}{(x+1)^4}$$

Donc:
$$f''(x) = \frac{4(\frac{1}{x}+1)(x+1)-8(\ln x+x+1)}{(x+1)^3}$$

Donc:
$$f''(x) = \frac{\frac{4(1+x)^2}{x} - 4(\frac{2x\ln x + 2x^2 + 2x}{x})}{(x+1)^3}$$

Donc:
$$f''(x) = \frac{4[x^2 + 2x + 1 - (2x \ln x + 2x^2 + 2x)]}{x(x+1)^3}$$

Donc: $f''(x) = \frac{4[x^2 + 2x + 1 - 2x \ln x - 2x^2 - 2x)]}{x(x+1)^3}$

Donc :
$$f''(x) = \frac{4(1-x^2-2xlnx)}{x(x+1)^3}$$

b) Etudier le signe de $1 - x^2$ et $-2x \ln x$ sur $|0:+\infty|$ et en déduire que le point d'abscisse 1 est l'unique point d'inflexion de (C_{ℓ}) .

Il est clair que le signe de f'' dépond de signe de $1 - x^2 - 2x \ln x$ 18th méthode

On a:
$$1-x^2=0 \Rightarrow x^2=1 \Rightarrow x=1$$

Et on a:
$$-2x \ln x = 0 \implies \ln x = 0 \implies x = 1$$

on dresse le tableau de signe de $1 - x^2$ et $-2x \ln x \sin |0\rangle + \infty$

X	0	1	+00
$1-x^2$	+	0	_
-2x Inc	+	0	_

Solt x ∈ [0:1]

Donc
$$1 - x^2 - 2x \ln x \ge 0$$

Donc
$$f''(x) \ge 0$$

Solt
$$x \in [1; +\infty]$$

Donc
$$1 - x^2 - 2x \ln x \le 0$$

Donc
$$f''(x) \leq 0$$

D'où la fonction f'' s'annule et change de signe en 1

Donc le point d'abscisse 1 est l'unique point d'inflexion de (C_f) .

20mm méthode

$$x \in]0;1] \Rightarrow x^2 \le 1 \Rightarrow 1-x^2 \ge 0$$

$$x \in [0; 1] \Rightarrow -2x \le 0$$
 et $ln(x) \le 0 \Rightarrow -2xlnx \ge 0$

Donc
$$\forall x \in [0; 1]: 1 - x^2 - 2x \ln x \ge 0$$

$$x \in [1:+\infty] \Rightarrow x^2 > 1 \Rightarrow 1-x^2 < 0$$

$$x \in [1; +\infty] \Rightarrow -2x \le 0 \text{ et } ln(x) \ge 0 \Rightarrow -2xlnx \le 0$$

Donc
$$\forall x \in [1; +\infty[: 1-x^2-2xlnx \le 0]$$

D'où la fonction f'' s'annule et change de signe en 1

c)Donner l'équation de la tangente (T)

à (C,)au point d'abscisse1

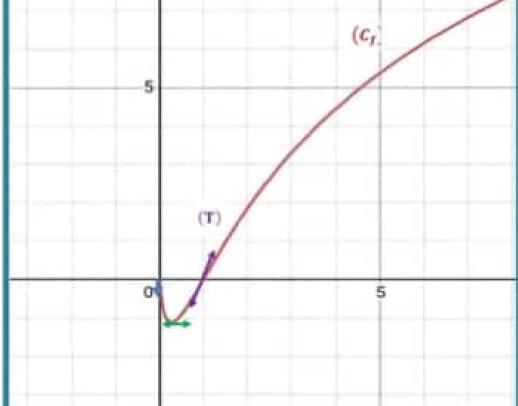
(T):
$$y = f'(1)(x-1) + f(1)$$

 $y = 2 \times (x-1) + 0$

Donc (T):
$$y = 2x - 2$$

4) Tracer (T) et
$$(C_f)$$
 dans le repère $(O; i; j)$. (on donne $\alpha \approx 0.25$)

On a
$$\alpha = 0.25$$
 donc $f(\alpha) = -4\alpha \approx -1$



C) Soit h la restriction de f sur l'intervalle $[a; +\infty]$.

Donc
$$\forall x \in [\alpha; +\infty] : h(x) = f(x)$$

- Montrer que h admet une fonction réciproque h⁻¹ définie J à déterminer
- f est dérivable sur |0, +∞| donc elle est continue sur |0, +∞| On particulier sur $[a; +\infty]$ donc h est continue sur $[a; +\infty]$.
- La fonction f est strictement croissante sur]α, +∞[Donc la fonction h est str croissante sur |a,+∞[

Donc f admet une fct réciproque f^{-1} , définie sur $J = h([\alpha; +\infty[)$

$$J = h([\alpha; +\infty[) = [h(\alpha); \lim_{x \to +\infty} h(x)]]$$
$$=]-4\alpha, +\infty[$$

Montrer que h⁻¹ est dérivable en 0 puis Calculer (h⁻¹)'(0).

On a:
$$h(1) = 0$$
 donc $h^{-1}(0) = 1$

La fonction h est dérivable en 1 et on a : $h'(1) = 2 \neq 0$

Donc la fonction h⁻¹ est dérivable en 0 et on a :

$$(h^{-1})'(0) = \frac{1}{h'(1)} = \frac{1}{2}$$

A) Soit g une fonction définit sur $|0 : +\infty|$ par

$$g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}$$

- 1) Déterminer $\lim_{x \to \infty} g(x)$ et Calculer $\lim_{x \to \infty} g(x)$
- 2) Montrer que $g'(x) = \frac{-1}{x(x+1)^2} \text{ sur } [0; +\infty[;$
- Dresser son tableau de variation sur |0: +∞|:
- 4) Montrer que : $\forall x \in [0; +\infty[: q(x) > 0]$
- B) Soit f une fonction définit sur [0;+∞ par:

$$f(x) = x \ln\left(1 + \frac{1}{x}\right)$$
; $si \ x \neq 0$ $et \ f(0) = 0$

- 1) Montrer que f est continue en 0 à droite
- 2) Montrer que $\lim_{x\to +\infty} f(x) = 1$, puis interpréter le résultat géométriquement
- 3) Etudier la dérivabilité de f en 0 à droite puis interpréter le résultat géométriquement
- 4)a) Montrer que f'est dérivable sur € [0, +∞] et que $\forall x \in [0, +\infty[: f'(x) = g(x)]$
- c) Dresser le tableau de variation de f sur]0 : +∞[
- Etudier la convexité de la courbe (Cf)
- 6) Tracer (Cf) dans un repère orthonormé (O:i:i) (unité 2 cm)
- C) Soit (U_n) tel que : $U_0 = \frac{1}{n}$ et $U_{n+1} = f(U_n)$
- 1) Montrer que : $\forall n \in \mathbb{N}$ $0 \le U_n \le \frac{1}{n-1}$
- 2) Montrer que la suite (U,,) est croissante
- 3) Déduire que (U,) est convergente et calculer la limite de (U,) Solution:
- A) 1) $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} \ln\left(1+\frac{1}{x}\right) \frac{1}{x+1} = +\infty$

Car
$$\lim_{x\to 0^+} \ln\left(1+\frac{1}{x}\right) = +\infty$$
 et $\lim_{x\to 0^+} \frac{1}{x+1} = 1$

 $\lim_{x \to 0} g(x) = \lim_{x \to 0} \ln \left(1 + \frac{1}{x}\right) - \frac{1}{x + 1} = 0$

Car $\lim_{t \to 0} \ln(1 + \frac{1}{t}) = \ln(1) = 0$ et $\lim_{t \to 1} \frac{1}{t+1} = 0$

A)2) Rappels:

$$[\ln(u)]' = \frac{u'}{u}$$
 et $(\frac{1}{x})' = -\frac{1}{x^2}$ et $(\frac{1}{u})' = -\frac{u'}{u^2}$

Soit $x \in [0; +\infty]$

$$g'(x) = -\frac{\frac{1}{x^2}}{1 + \frac{1}{x}} - \frac{-1}{(x+1)^2}$$

$$= -\frac{\frac{1}{x^2}}{\frac{x+1}{x}} + \frac{1}{(x+1)^2}$$

$$= -\frac{\frac{1}{x}}{x+1} + \frac{1}{(x+1)^2}$$

$$= -\frac{1}{x(x+1)} + \frac{1}{(x+1)^2}$$

$$= -\frac{(x+1)}{x(x+1)^2} + \frac{x}{x(x+1)^2}$$

$$= \frac{-x-1+x}{x(x+1)^2}$$

Donc $\forall x \in]0, +\infty[: g'(x) = \frac{-1}{r(x+1)^2}$

3) On a $\forall x \in]0, +\infty[: g'(x) = \frac{-1}{x(x+1)^2} < 0$

Donc la fonction g est strictement décroissante sur $[0, +\infty]$

0	+00	X
	_	g'(x)
	+00	n(v)

4) On a
$$g(]0; +\infty[) = \lim_{x \to +\infty} g(x) : \lim_{x \to 0^+} g(x)[$$

= $]0; +\infty[$

Donc pour tout $x \in [0, +\infty[$ on $a : g(x) \in [0, +\infty[$

Donc $\forall x \in [0; +\infty[: g(x) > 0]$

B) 1) Montrerons que f est continue en 0 à droite

$$\lim_{x \to 0^{\pm}} f(x) = \lim_{x \to 0^{\pm}} x \ln\left(1 + \frac{1}{x}\right)$$

$$= \lim_{x \to 0^{\pm}} x \ln\left(\frac{x+1}{x}\right)$$

$$= \lim_{x \to 0^{\pm}} x \ln(x+1) - \sin(x)$$

$$= 0$$

Car $\lim_{x\to 0^+} x \ln(x+1) = 0 \times \ln(1) = 0$ et $\lim_{x\to 0^+} x \ln(x) = 0$

Donc $\lim_{x \to 0^+} f(x) = f(0)$

D'où f'est continue à droite de 0

2)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$$
On pose $X = \frac{1}{x}$ donc $x = \frac{1}{x}$; or $x \to +\infty \Leftrightarrow X \to 0^+$

$$\lim_{x \to +\infty} x \ln(1 + \frac{1}{x}) = \lim_{x \to 0^+} \frac{1}{x} \ln(1 + X)$$

$$= \lim_{x \to 0^+} \frac{\ln(1 + X)}{x} = 1$$

Car $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

Donc $\lim_{x \to +\infty} f(x) = 1$

Interprétation géométrique :

La droite (D) d'équation y = 1 est asymptote horizontale à la courbe (Cf) au voisinage de +∞

3)
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x \ln\left(1 + \frac{1}{x}\right)}{x}$$
$$= \lim_{x \to 0^+} \ln(1 + \frac{1}{x})$$
$$= +\infty$$

Donc f n'est pas dérivable à droite de 0

Interprétation géométrique :

(Cf) la courbe de la fonction f admet une demi-tangente verticale en 0 dirigée vers le haut

4)a) Montrons que f est dérivable sur |0 : +∞[

- La fonction x → 1 + ½ est dérivable sur]0 ; +∞[car c'est une fonction rationnelle elle toujours dérivable sur tout intervalle inclus dans son domaine de définition qui est 1-0:0[U]0:+00[
- Donc La fonction x → ln(1+½) est dérivable sur]0;+∞[
- La fonction x → x est dérivable sur |0 : +∞| : (Polynome)
- ➤ Donc la fonction f est dérivable sur]0 : +∞[

Rappels:

$$(uv)' = u'v + uv'$$
 et $[\ln(u)]' = \frac{u'}{u}$ et $(\frac{1}{x})' = -\frac{1}{x^2}$

Soit $x \in [0; +\infty[$

$$f'(x) = 1 \times \ln\left(1 + \frac{1}{x}\right) - x \times \frac{\frac{1}{x^2}}{1 + \frac{1}{x}}$$
$$= \ln\left(1 + \frac{1}{x}\right) - \frac{\frac{1}{x}}{\frac{x+1}{x}}$$
$$= \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}$$

Donc $\forall x \in]0, +\infty[:f'(x) = a(x)$

c) On a: $\forall x \in [0, +\infty] : g(x) > 0$

Donc $\forall x \in [0, +\infty] : f'(x) > 0$

Donc la fonction f est strictement croissante sur |0, +∞

0	+00	X
	+	f'(x)
0 —	1	f(x)

- 5) On a $\forall x \in]0, +\infty[: f'(x) = g(x)]$
- Donc $\forall x \in [0, +\infty[: f''(x) = g'(x)]$

Donc $\forall x \in]0, +\infty[: f''(x) = \frac{-1}{x(x+1)^2} < 0$

Donc la courbe (Cf) est concave sur $[0, +\infty]$

6) Tracer (Cf) dans (0; i; j)

- () 1) Démontrer par récurrence que $\forall n \in \mathbb{N}$ $0 \le U_n \le \frac{1}{n}$
- > Pour n=0 on a $1 \le u_0 = \frac{1}{2} \le \frac{1}{2}$

Donc la proposition est vraie pour n = 0

Soit n ∈ N

> Supposons que $0 \le U_n \le \frac{1}{r-1}$ et montrons que $0 \le U_{n+1} \le \frac{1}{r-1}$.

f est strictement croissante sur l'intervalle $\left[0; \frac{1}{e-1}\right]$

$$0 \le u_n \le \frac{1}{e-1} \implies f(0) \le f(u_n) \le f(\frac{1}{e-1}) \implies 0 \le U_{n+1} \le \frac{1}{e-1}$$

>
$$Car$$
; $f\left(\frac{1}{e-1}\right) = \frac{1}{e-1} ln\left(1 + \frac{1}{e-1}\right) = \frac{1}{e-1} ln(1 + e - 1) = \frac{1}{e-1}$

D'après le principe de récurrence, on a : $(\forall n \in \mathbb{N})$: $0 \le U_n \le \frac{1}{r-1}$

2)
$$u_{n+1} - u_n = u_n \ln \left(1 + \frac{1}{u_n}\right) - u_n = u_n \left(\ln \left(1 + \frac{1}{u_n}\right) - 1\right)$$

$$0 \le U_n \le \frac{1}{e-1} \Longrightarrow \frac{1}{u_n} \ge e-1 \Longrightarrow \frac{1}{u_n} + 1 \ge e \Longrightarrow \ln(\frac{1}{u_n} + 1) \ge 1$$

$$\Rightarrow \ln\left(\frac{1}{u_n}+1\right)-1\geq 0 \Rightarrow u_n(\ln\left(1+\frac{1}{u_n}\right)-1)\geq 0$$

 $\Rightarrow u_{n+1} - u_n \ge 0 \Rightarrow \text{la suite } (u_n) \text{ est croissante}$

3) Déduire que (Un) est convergente et calculer la limite de (Un)

- (u_n) est croissante et majorée par $\frac{1}{n-1}$ donc convergente.
- f est continue sur l'intervalle [0; 1/2-1] car elle est dérivable sur l
- $f(0; \frac{1}{r-1}) = [f(0); f(\frac{1}{r-1})] = [0; \frac{1}{r-1}] \subset [0; \frac{1}{r-1}]$
- $u_0 = \frac{1}{2} \in [0; \frac{1}{2}]$

Alors la limite de (u_n) est L la solution de l'équation f(x) = x

$$f(x) = x \Leftrightarrow x \ln\left(1 + \frac{1}{x}\right) - x = 0 \iff x \left(\ln\left(1 + \frac{1}{x}\right) - 1\right) = 0$$

$$\Leftrightarrow x = 0 \text{ ou } \ln\left(1 + \frac{1}{x}\right) - 1 = 0 \iff x = 0 \text{ ou } \ln\left(1 + \frac{1}{x}\right) = 1$$
$$\Leftrightarrow x = 0 \text{ ou } 1 + \frac{1}{x} = e \iff x = 0 \text{ ou } x = \frac{1}{e - 1}$$

Et on a la suite (u_n) est croissante donc la limite est $\frac{1}{n-1}$